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Myoelectric Control of Artificial Limbs—
Is There a Need to Change Focus?

R
ecently, there have been sever-
al media reports on advanced 
multifunction upper limb 
prostheses, often hyped as “the 
mind-controlled artificial 

hands” [1]. Advanced signal processing of 
the electromyogram (EMG) signal and 
innovative surgical procedures, such as 
the targeted muscle reinnervation (TMR) 
and targeted sensory reinnervation (TSR), 
are the driving forces behind these 
achievements. Nonetheless, despite the 
enthusiasm of some public presentations 
of artificial devices, there still exist consid-
erable challenges before these develop-
ments can be beneficial to the general 
amputee population. In this article, the 
basic concept of myoelectric control and 
the state of the art in both industry and 
academia will be presented. It will emerge 
that there is a gap between industrial 
and academic achievements and that this 
gap will continue to expand unless a 
change of focus in systems for myoelec-
tric control occurs. 

EMG AND MYOELECTRIC CONTROL
The electrical manifestation of the 
 muscle contractions is called EMG, and 
it contains information about the neural 
signals sent from the spinal cord to con-
trol the muscles. The power of the EMG 
is partly correlated to the intensity of 
the motor neural drive to the target 
muscle [2]. This property has been 
exploited in many applications, includ-
ing myoelectric-controlled prosthesis, 
where the surface EMG is recorded from 
the remnant muscles of the stump and 
used, after processing, for activating cer-

tain prosthetic functions of the prosthe-
sis, such as hand open/close. Although 
such control of prosthetic functions is 
possible through signals other than the 
EMG (e.g., brain or nerve signals), the 
surface EMG has been virtually the only 
control signal for practical uses of multi-
function upper limb prosthesis since the 
1950s. This status is due to its easy 
access and is likely to remain in the 

 foreseeable future. Moreover, TMR cur-
rently allows to selectively transfer some 
of the nerves that once controlled the 
amputated limb to some surrogate mus-
cles which act as biological amplifiers of 
the nerve activities. Similarly, TSR 
allows sensory receptors in the skin near 
or over TSR site to relay sensory infor-
mation as if they were the receptors in 
the amputated limb. In this view, the 
muscle interface becomes a very general 
man-machine interface that in principle 
can be used even when the level of 
amputation is high.

Despite decades of research and 
development, however, myoelectric 
control of upper limb prostheses still 
generates relatively limited clinical 
(and commercial) impact, as only one 
out of four upper limb amputees chose 
to use myoelectric-controlled prosthe-
ses [3]. This situation is contrasted by 
the increasing enthusiasm on this 
topic within the academic community, 

which has shown for several years that 
gestures and motor tasks can be classi-
fied very accurately by the analysis of 
the EMG. This article aims at high-
lighting this gap between the academic 
and industry state of the art in myo-
electric control. We focus on the main 
challenges facing myoelectric control 
and on possible approaches to bridge 
the gap. 

CONVENTIONAL MYOELECTRIC 
CONTROL
The earliest versions of the myoelectric 
controller are dated to the 1950s and 
1960s and employed simple algorithms. 
For example, a function could be acti-
vated by comparing the EMG amplitude 
to a threshold and different functions 
could be controlled by the same tech-
nique applied to multiple recording 
sites. Despite dating back to more than 
50 years ago, this simple approach is 
still used by the vast majority of com-
mercially available powered prostheses. 
Nevertheless, these systems are inher-
ently limited and the number of reliable 
functions per channel never exceeds 
three [4].

PATTERN CLASSIFICATION-BASED 
MYOCONTROL
Since the early 1960s, pattern recogni-
tion-based classification techniques 
started to attract the interest of the 
research community working on con-
trolling artificial limbs. The pattern 
classification approach for myoelectric 
control is based on the assumption 
that there exist distinguishable and 
repeatable signal patterns among 
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 different types of muscular activations. 
A pattern classification myoelectric 
controller usually consists of three 
main steps: segmentation, feature 
extraction, and classification. Seg -
mentation is usually performed in the 
intervals of 150–200 ms to obtain an 
acceptable control delay. Feature 
extraction and classification of the 
EMG have been  performed in many 
ways in the scientific literature. It is 
now accepted that among the large 
number of possible combinations of 
features and classifiers, the combina-
tion of time domain features with 
Fisher linear discriminant analysis 
provides a good balance between algo-
rithm performance and computational 
efficiency. For example, with such an 
approach, Englehart et al. reported 
>95% real-time classification accu-
racy in a four-class wrist contraction 
experiment [5]. Further improvements 
can be achieved by additional process-
ing steps, such as majority vote or fea-
ture dimensionality reduction.

THE DICHOTOMY BETWEEN 
ACADEMIA AND INDUSTRY 
STATE OF THE ART
Interestingly, all myoelectric controllers 
based on pattern classification that have 
appeared in the literature since the 
1990s have provided similar perfor-
mance (>90% classification accuracy). 
Further refinement of such accuracy 
levels seems thus not strictly needed. 
More  over, a comprehensive study of the 
 performance and usability of 36 myo-
electric controllers demonstrated that 
the relation between classification accu-
racy and usability of the controller is 
absent or very weak at best [6]. This fur-
ther diminishes the importance in 
advancing accuracy in classic pattern 
classification for myocontrol. From the 
scientific literature, one would conclude 
that the myoelectric classification for 
prosthetic control is not only possible 
but also highly accurate, even with a 
large number of functions (>10). This 
conclusion heavily collides with the 
clinical practice and commercial data: 
amplitude-based myoelectric control 
(and not pattern classification) is used 

in all commercial devices and only a 
quarter of patients with an upper limb 
amputation use a myoelectric prosthesis 
[3]. The pattern classification approach 
of myoelectric control seems thus very 
successful in scientific papers but much 
less for the patients. The reasons for this 
dichotomy, which will be analyzed in 
the following, highlight the need for a 
change of focus in signal  processing 
algorithms for myoelectric control.

CHALLENGES IN 
SIGNAL PROCESSING AND 
FUTURE DIRECTIONS

SEQUENTIAL AND ON/OFF 
CONTROL: HOW FAR CAN IT GO?
The main problem with the pattern 
classification for myoelectric control is 
that it inherently leads to a control 
scheme that is substantially different 

from the natural control. Natural move-
ments are continuous and require the 
coordination of multiple physiological 
degrees of freedom (DOF) across several 
joints. Natural movements of the limb 
are usually simultaneous and propor-
tional articulations of these DOFs. 
Therefore, the parameter space that 
describes natural movements (EMG, 
kinematics, and kinetics) is continuous. 
On the other hand, the number of pat-
terns in a pattern classification-based 
controller is limited. Thus, a crude dis-
crete approximation of the continuous 
parameter space is obtained by classifi-
cation. This discrete approximation 
leads to two problems. First, only one 
class can be selected in one decision, 
i.e., the controller is sequential. Indeed, 
none of the pattern classification-based 
methods currently proposed in the lit-
erature can generate reliable simultane-

ous activation of two classes. Second, 
proportional control is not directly 
obtained from the classification. 
Actually, proportionality in the com-
mands impairs the accuracy of the clas-
sification. The features of a particular 
pattern migrate in the feature space as 
the intensity of the movements varies 
and they may pass through the decision 
boundaries, which leads to erroneous 
decisions. Proportional control is cur-
rently implemented after the classifica-
tion decisions are made, by taking the 
average power across all channels, 
which is an ad hoc approach. 

The above discussion underlines the 
need for the development of methods 
that realize simultaneous and propor-
tional control of multiple DOFs. This 
research direction has been attempted 
very recently in “biologically inspired” 
ap  proaches where the multichannel 
EMG signals are factorized to extract 
“motor commands” of higher functional 
level with respect to the individual 
 muscle activations [7]. This approach has 
been followed in recent subsequent stud-
ies that proved the feasibility of a more 
intuitive and advanced control of artifi-
cial limbs.

SENSORY-MOTOR INTEGRATION: 
THE NEED FOR CLOSING THE LOOP
Sensory-motor integration is a process 
ubiquitous to the physiological human 
motor control. Motor commands, for -
med by a neural controller, generate 
purposeful movements (e.g., reaching, 
grasping), and the resulting sensory 
consequences are fed back to the con-
troller via a multimodal sensory feed-
back (e.g., vision, proprioception, touch/
pressure). Importantly, the operation of 
this sensory-motor loop is essential for 
effective motor control, learning, and 
adaptation. Multimodal sensory feedback 
is so relevant for motor control that the 
functional movements of patients who 
are deprived of sensory feedback are 
severely impaired and require significant 
mental effort, although there is a full 
integrity of the motor pathways [8]. 
Despite the awareness of the need for 
sensory feedback in normal task per -
formance, most current myoelectric 
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 prostheses implement only the feed-for-
ward or motor part of the loop while the 
sensory feedback is limited to a single 
modality (vision).

The concept of artificial sensory feed-
back in prosthetics was conceived a long 
time ago [9]. The main motivation for 
this pioneering research was to improve 
the utility of simple devices  that were 
available at the time by providing the user 
with the means to operate the prosthesis 
in a closed loop. Contrary to those simple, 
one-DOF mechanisms, modern prosthetic 
hands, such as the Otto Bock Michel-
angelo hand (shown in Figure 1) or 
Touch Bionics i-Limb, are highly sophisti-
cated robotic systems with a number of 
independently controllable DOFs. In this 
case, the sensory feedback is no longer 
just an optional add-on, but it is likely an 
essential element that has to be imple-
mented for users to master a complex 
device and operate it without an excessive 
mental effort. However, the research on 
sensory integration in myoelectric con-
trol in the last decades has been negligible 
when compared to the resources devoted 
to decoding motor actions. 

The feed-forward information proper-
ties of electrocutaneous and vibratory 
stimulation channels have been exten-
sively studied in the past [10]. However, 
the loop has not been fully closed to 
evaluate the performance of these dis-
plays for the closed-loop control of 
dynamic systems. In addition to these 
system control experiments, the role and 
operation of physiological multimodal 
sensory feedback and its components 
during reaching and grasping should be 

better understood. In other words, the 
biological sensor fusion algorithms need 
to be decoded at a sufficient level of 
detail so that the main principles can be 
integrated when designing artificial feed-
back systems. Such decoding could be 
accomplished by the sensor fusion 

approach that is currently been investi-
gated in neuroscience, e.g., combining 
electroencephalography and functional 
magnetic resonance imaging for better 
understanding of neural information 
processing [11]. Finally, the introduction 
of the feedback will unavoidably influ-
ence the feed-forward part. Therefore, an 
effective solution to the issue of deliver-
ing feedback to the prosthesis’ user 
would open new perspectives in algo-
rithm design and new possibilities for 
effective and intuitive prosthetic control.

ADAPTATION
Most of the studies on myoelectric 
 control algorithms are being performed 
in controlled laboratory conditions with 
intact-limbed subjects, in fixed arm/trunk 
positions. These conditions do not pres-
ent the sources of artifacts that are com-

mon in more practical scenarios. 
Moreover, the statistical properties of the 
EMG recorded in classic myoelectric con-
trol paradigms in laboratories are usually 
stationary, which are different from more 
general conditions. It is known that the 
EMG signal characteristics change 
because of sweat, fatigue, displacement of 
the recording electrodes, or from differ-
ent strategies adopted by the user who is 
adapting to the system. The fact that very 
few myoelectric control systems proposed 
in the scientific literature can adapt to 
such changes is by itself a good reason for 
the lack of usability of these systems in 
practice. Adaptive signal processing of 
EMG signals for myoelectric control is 
thus another imperative demand (e.g., 
[12]), in particular we envision similar 
efforts as coadaptivity between human 
and the control strategy as implemented 
recently in other rehabilitation technolo-
gies (e.g., [13]). As for the other demands 
that we have listed above, the efforts in 
this direction are currently very limited.

MORE IS BETTER: 
SENSOR-FUSION APPROACH
Given the difficulty of robust control 
solely by using EMG, the use of other 
sensor modalities seems necessary for 
the control of complex devices. The rich 
multimodal input would not only allow 
for the improved control but could also 
lead to the development of intelligent 
controllers that are able to operate 
somewhat autonomously, thereby tak-
ing over some of the burden from the 
user. Miniature sensors and embedded 
systems with considerable processing 
power are currently available so that 
this approach is both feasible and prac-
tical. For example, inertial measure-
ment units can measure the orientation 
and movement of the prosthesis and 
from this, the intention of the user and 
the phase of the reaching movement 
could be predicted, complementing the 
information obtained via a myoelectric 
interface. Recently, a system demon-
strating a combination of artificial 
vision, ultrasound distance sensor, and 
myoelectric control has been presented 
[14]. The next steps in this direction 
should be the implementation of 

[FIG1] Otto Bock’s Michelangelo hand, providing 2+2 DOFs of the wrist and hand. 
(Photo reprinted with permission from Otto Bock and MXR Productions.)
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 sensor-fusion approaches, in which 
inertial,  myoelectric, and  possibly other 
information sources (e.g., artificial 
vision) are integrated. This requires 
data fusion and signal processing algo-
rithms to predict user intentions and 
control reaching and grasping move-
ments based on a multimodal feedback. 

SUMMARY AND CONCLUSIONS
Myoelectric control has a great poten-
tial for improving the quality of life of 
persons with limb deficiency. However, 
despite the tremendous success in 
obtaining almost perfect classification 
accuracy from EMG, its clinical and 
commercial impact is still limited. We 
have identified some of the reasons that 
we believe are relevant for explaining 
this seeming contradiction. The major-
ity of current pattern classification 
methods do not provide simultaneous 
and proportional control, are not imple-
mented with sensory feedback, do not 
adapt to the changes in EMG signal 
characteristics, and do not integrate 
other sensor modalities to allow com-
plex actions. These problems hinder the 
possibility of using such paradigm in 
applications that aim at clinical and 
commercial use. Academic research has 
focused in the past decades on refining 
classification accuracy and has rele-
gated to secondary importance the 
aspects outlined in this article. As such, 
a gap between the academia and the 
industry state of the art has been gener-
ated unnecessarily. This gap could be 
filled by addressing the specific needs of 
intuitive myoelectric control and sys-
tem robustness. With this position, we 
are not questioning the need of further 
research within pattern classification of 
EMG. Indeed, three of the four demands 
that we have identified can be imple-
mented within a pattern classification 
paradigm. Rather, our intention is to 
raise the awareness for the necessity of 
additional parallel research efforts 
toward issues whose importance for 

practical implementations has been 
underestimated.
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M. C. Carrozza, and D. B. Popović, “Cognitive vision 
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