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O
ne of the most exciting and compelling areas of research and development is building brain–

machine interfaces (BMIs) for controlling prosthetic limbs. Prosthetic limb technology is ad-

vancing rapidly, and the modular prosthetic limb (MPL) of the Johns Hopkins University/

Applied Physics Laboratory (JHU/APL) permits actuation with 17 degrees of freedom in 26 

articulating joints. There are many signals from the brain that can be leveraged, including the 

spiking rates of neurons in the cortex, electrocorticographic (ECoG) signals from the surface 

of the cortex, and electroencephalographic (EEG) signals from the scalp. Unlike microelectrodes that 

record spikes, ECoG does not penetrate the cortex and has a higher spatial specificity, signal-to-noise 

ratio, and bandwidth than EEG signals. We have implemented an ECoG-based system for controlling 

the MPL in the Johns Hopkins Hospital Epilepsy Monitoring Unit, where patients are implanted with 

ECoG electrode grids for clinical seizure mapping and asked to perform various recorded finger or grasp 

movements. We have shown that low-frequency local motor potentials (LMPs) and ECoG power in the 

high gamma frequency (70–150 Hz) range correlate well with grasping parameters, and they stand out 

as good candidate features for closed-loop control of the MPL. 

An estimated number of 541,000 Americans were living with some form of upper limb loss in 2005, 

and this number is projected to more than double with an aging and growing population by 2050 [1]. 

Loss of limb may occur congenitally or due to cancer, diseases of the vasculature, or trauma, 

including industrial or farming accidents and battlefield injuries. The recent wars in Iraq and 

Afghanistan have resulted in a large veteran population with substantial upper limb loss due 

to trauma. This population has inspired research in the development of advanced prosthetic 

limbs. An outstanding example has been the JHU/APL MPL [Figure 1(a)], developed under 

the sponsorship of Defense Advanced Research Project Agency (DARPA), which has 17 con-

trollable degrees of freedom in 26 articulating joints [2]. This limb has actuators to control 

the shoulder, elbow, and wrist, in addition to the fingers and thumb, providing extensive dexterous 

capabilities. Such an advanced limb also poses a control problem. Traditional approaches have used 

myoelectric signals from the forelimb of transradial amputees. Another more recent approach has been 

the use of peripheral nerve reinnervation of the chest, using orphaned muscles as a biological amplifier 

for nerve signals to control a prosthetic limb [3]. 

Despite these well-accepted approaches, there is good reason to believe that it is possible to achieve 

direct neural control of prosthetics that is intuitive and adaptive, involving the subject’s complete sen-

sory, motor, and cognitive capabilities. This broad area of research, known as BMI, is attempting to 

leverage patients’ still-functional brains for direct control of a machine, be it a prosthetic hand [4], a 

computer cursor [5], or a wheelchair [6]. The goal of BMI is to interject a machine into the anatomical 

pathways of the human nervous system to augment, alter, or replace a lost biological function. A basic 

schematic of a BMI is shown in Figure 1(b). 

Building Brain–
Machine Interfaces
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Methods

Neural Data Acquisition
The BMI community has explored many  avenues 

of access to neural signals for BMI applications, 

but, traditionally, four  modalities dominate: 1) 

EEG is the measure of neural potentials arising 

from the cortex from electrodes placed on the 

scalp, 2) ECoG is the measure of cortical poten-

tials from the surface of the cortex, 3) local field 

potentials are the low-pass filtered (e.g., 200 Hz) 

electrical potentials recorded from cortex-pen-

etrating microelectrodes, and 4) single or mul-

tiunit recordings to detect action potentials (or 

spikes) from neighboring neurons. Considering 

the potential strengths and weaknesses associat-

ed with these methods, ECoG occupies a unique middle ground 

among these technological tradeoffs. There have been a few pi-

oneering efforts to use ECoG recording for BMI purposes. These 

include control of a cursor in one and two dimensions [7], [8] 

and decoding of individu-

al finger movements [9], 

slow grasping motions of 

the hand [10], and grasp 

type [4]. Two qualitatively 

different features of the 

ECoG signal are emerging 

from these studies. Power 

in the high gamma band 

(>70 Hz) has been estab-

lished as a reliable index 

of cortical processing [11], 

[12], and the recently re-

ported LMP [13] has been 

used for decoding slow 

grasping motions of the 

hand [10] and individual 

finger movements [9].

System Implementation
The system we have de-

veloped, and continue to 

refine, is designed to en-

able communication and 

synchronization of three 

distinct nodes. In gen-

eral terms, these nodes 

are responsible for neu-

ral signal acquisition and 

processing, behavioral ki-

nematic  acquisition, and 

artificial limb actuation. 

Neural signal acquisition 

is accomplished using a 

Neuroscan SynAmps2 

hardware that can be 

used to amplify either 

EEG or ECoG signals. For our ECoG experiments, neural sig-

nals are sampled at 1,000 Hz with a bandpass filter from 0.15 

to 200 Hz. Neuroscan Scan software streams the raw neural 

data samples over transmission control proto-

col/Internet protocol (TCP/IP), where they are 

received by our custom MATLAB code and 

processed to extract signal features relevant 

to human motor movements. Raw neural sig-

nals are first rereferenced to a common aver-

age reference (CAR) in the time domain as a 

spatial filter to remove elements of the signal 

common to all channels. Time and frequency 

domain features are then extracted from the 

CAR-filtered channel data. Specifically, the 

signal power is extracted in five physiologically 

relevant frequency bands (i.e., n band, 7–13 

Hz; b band, 16–30 Hz; low c band, 30–50 Hz; high c band, 

70–100 Hz and 100–150 Hz) using the fast Fourier transform 

and two amplitude time windows (i.e., 512 ms, 2,048 ms) us-

ing moving-average filters. These features are approximately 
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extracted every 40 ms and synchronized with 

the streaming behavioral kinematic data.

Behavioral kinematic data acquisition is ac-

complished using the Optotrak system and Cy-

berGlove. Artificial limb actuation is achieved 

either in three-dimensional virtual or physical 

space. JHU/APL has previously reported and 

demonstrated MPL, a 27 degree of freedom pros-

thetic arm, complete with control of the shoul-

der, elbow, wrist, and fingers. This arm has been 

duplicated as a virtual model in the musculoskeletal modeling 

software (MSMS) simulation environment [14], which has been 

developed at the University of Southern California and is freely 

available online. The computational resources necessary to pro-

cess the incoming neural and kinematic data are 

contained within a single eight-core Dell Work-

station with 32-GB RAM, of which four are dedi-

cated to MATLAB’s parallel computing toolbox. 

A photograph of this environment, including a 

patient seated in his hospital room, is depicted in 

Figure 2(b).

Results
We have used the system described to initiate 

research into ECoG-based control of a dexterous prosthetic 

limb. ECoG electrode grids are predominantly implanted for 

clinical purposes in patients with uncontrollable epileptic 

seizures [Figure 2(a)]. In a previously published study, our 

(a) (b)

FIGURE 2 (a) An intraoperative photo of an ECoG grid being placed in a human patient. (b) A real object target is presented (from bot-
tom right) as a cue to a patient (offscreen to the left for anonymity). The patient is pointing to the target, and his motions are being 
tracked by Optotrak markers on the shoulder and hand. The three-dimensional position of the patient’s hand and cue are being 
displayed in the MSMS simulation environment. The virtual cue is yellow, indicating a successful trial. 

(a) (b)

FIGURE 1 JHU/APL MPL and an ECoG BMI schematic. (a) A photograph of the JHU/APL MPL. (b) The configuration depicted involves 
acquisition of the ECoG signals from electrodes placed on a human brain (left and top) and their computational analysis and model-
ing (right) to drive a prosthetic limb (bottom). The left and bottom figures have been adapted from screenshots of MSMS. 
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 laboratory discovered that the LMP recorded 

from subjects implanted with ECoG grids could 

be used to decode slow grasping motions of the 

hand with simple linear models. LMP signals 

with the highest correlation to the recorded 

kinematics were selected for inclusion in the 

decoding models. Peak decoding performance 

was achieved with as few as four electrodes in 

areas that can be intraoperatively identified as 

having motor involvement, meaning that these signals can be 

recorded from low-footprint ECoG grids implanted in known 

areas. These results are promising in the use of LMP signals 

for neuroprosthetic applications. The robustness of LMP as 

a phenomenon is validated by the high decoding accuracy 

across sessions. 

In a more recent work from our laboratory, we investigated 

the neural signals responsible for the coordination of slightly 

more complex grasps [15]. Our study showed that frequency 

components in the high gamma band (70–100 Hz and 100–150 

Hz) provide the best performance for decoding grasp aperture. 

Figure 3(a) shows the location of the implanted grid electrodes, 

with darkened electrodes corresponding to motor brain areas, 

as identified by electrocortical stimulation mapping (ESM). Fig-

ure 3(b) shows the spatial pattern of decoding accuracies ob-

tained using 70–100 Hz power from single electrodes at various 

locations in the cortex. Again, the highest-performing elec-

trodes appear to be concentrated over areas identified as having 

motor involvement before experimentation. Figure 3(c) dem-

onstrates the correspondence between observed and decoded 

grasp aperture traces using the 20 features that 

best predict grasp aperture in each cross-valida-

tion training set. 

Our results not only indicate that complex 

movements can be decoded from a patient’s 

ECoG signal, but that both LMP (an amplitude 

feature) and high gamma band (a spectral fea-

ture) should be considered in decoding com-

plex motor tasks. Although it is an area of ac-

tive investigation, it is our hypothesis that the LMP, as a slower 

signal, encodes information about low velocity or repetitive 

movements fairly robustly, while the high gamma band may 

be more useful for decoding movements with  higher degrees 

of complexity or more sudden onset. 

Future Directions
We are making steady progress toward the dream of neural con-

trol of prosthetic limbs using a variety of means, but the journey 

is just beginning. A few major challenges in achieving ECoG-

based control of dexterous prosthetic remain, including the fol-

lowing:

 ▼ improving the resolution of ECoG arrays (high-resolution 

ECoG with arrays of mini- and microelectrodes) may pro-

vide better localization to the areas of the cortex and is re-

sponsible for dexterous hand and finger movements

 ▼ maturation of decoding algorithms specifically suited to 

ECoG signals (signals in very low frequency as well as high 

gamma bands) may offer novel decoding capabilities and 

information

The signal power 
is extracted in five 

physiologically 
relevant frequency 

bands.

FIGURE 3 The spatial distribution of single feature decoding accuracy and example decoding trace with 20 features. (a) Circles denote 
implanted electrodes that were included in the analysis, while darkened electrodes indicate that motor behavior was elicited or 
interrupted during ESM. (b) Single-feature decoding accuracies: Pearson’s correlation r between the observed and decoded traces. 
(c) The example traces show the fidelity of decoded grasp aperture to the observed grasp aperture. Predicted traces have been 
formed in fivefold cross-validation with linear models and trained with 20 distinct neural signal feature inputs. (Adapted and 
modified from [15].) 
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 ▼ provision of proprioceptive and touch feedback to the neu-

roprosthetic user (by stimulating intact peripheral nerves 

or directly stimulating the somatosensory cortex [16]) may 

greatly facilitate natural control of an artificial limb

 ▼ building fully implanted ECoG systems (long-term cortical-

ly controlled prosthetics) will need to be composed of elec-

trodes, circuits, and telemetry interface to the limb while 

being fully implanted and powered

 ▼ ethical considerations in the selection of patients and im-

plantation with regard to the potential risks and benefits to 

each individual patient. 
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