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E
xtracellular recording, the technique of inserting an electrode into the extra-
cellular tissue of the brain to record the activity of individual neurons (“sin-
gle-unit activity”), is a common experimental method used by neuroscientists 
to study how the brain works. In recent years, researchers have also demon-
strated its potential use in medical technologies for the treatment of disorders 

such as paralysis, epilepsy, and memory loss. Although most of these applications 
require single-unit activity, these electrodes record the activity from multiple neurons 
surrounding the electrode. Spike sorting is the process of separating this signal into sin-
gle-unit activity. A number of algorithms for this purpose have been published over the 
years, but there is still no universally accepted solution. In this article, we will present 
an overview of the spike-sorting problem, its current solutions, and the challenges that 
remain. Because of the increasing demand for chronically implanted spike-sorting hard-
ware, we will also discuss implementation considerations.

[The first step in decoding the brain]
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INTRODUCTION
For centuries, scientists have 
been using electrophysiology to 
study the electrical properties of 
biological cells and tissues. In 
1791, Luigi Galvani discovered 
that he could induce contraction 
in a frog leg muscle by applying 
an electric current [1]. In 1952, Hodgkin and Huxley, using an 
experimental technique they developed called the “voltage 
clamp,” made a number of groundbreaking discoveries on the 
movement of ions across the membranes of nerve cells during 
action potential generation for which they eventually received a 
Nobel Prize [2]–[5]. In 1977, Hubel and Wiesel (also Nobel Prize 
laureates) used electrophysiological recordings to provide the 
first information about how the activity of individual neurons 
contribute to higher visual processing [6]. 

Electrophysiological recordings can be made from within 
cells (intracellular) or from outside cells (extracellular). In 
studies of the central nervous system, small-diameter 
 electrodes can be positioned in the extracellular space to record 
electrical signals from surrounding neurons (Figure 1). These 
electrodes are able to detect action potentials from individual 
neurons. The ability of extracellular recording to provide 
researchers with neuron-level activity combined with its rela-
tively low level of difficulty to perform (as compared to intracel-
lular recording, for example) have led extracellular recording to 
become the dominant experimental technique in many studies. 
For example, there has been a movement in neuroscience 
research to study not only individual neurons but networks of 
neurons to understand how the activity of interconnected neu-
rons results in higher-order functions such as perception, 
understanding, movement, and memory. Such studies require 
extracellular recording from ensembles of neurons using multi-
channel electrode arrays. In Methods for Neural Ensemble 
Recordings, contributing authors Sameshima and Baccalá go so 
far as to claim that “extracellular recordings are the only practi-
cal choice in experiments that intend to establish correlations 
between neural ensemble responses and behaviors involving 
awake animals” [7]. 

Electrophysiology is also used in clinical settings. For exam-
ple, in patients with severe pharmacologically intractable epi-
lepsy who require surgical resection of the affected brain tissue, 
electrophysiological recordings from depth electrodes placed 
inside the brain are used to localize brain areas where seizures 
begin. These larger electrodes mainly record electroencephalo-
gram (EEG) signals, but often microelectrodes are implanted as 
well for use in research (e.g., [8]–[10]), since single-unit activity 
provides greater detail on changes in signal transmission that 
could distinguish normal from abnormal activity. And over the 
past decade, the technique of extracellular recording has 
received additional attention as researchers have begun to tap 
into its potential use in medical technologies for the treatment 
of disorders such as paralysis [11], [12], epilepsy [11], and even 
cognitive and memory loss [13]. 

Whether the application is 
basic science research or medical 
technology, the signals from 
individual neurons (“single-unit 
activity”) are often of particular 
interest. In basic science, for 
example, the researcher may 
require knowledge of single-unit 

activity to study how a type of neuron responds to a specific 
stimulus. Similarly, most neural prosthetic technologies employ 
some sort of “decoding” algorithm—which may decode move-
ment [11], [12], [14], intentions [15], or memories [13]—that 
typically operates on signals from individual neurons. But 
because of the sizes of recording electrodes, the recorded signal 
is the sum of the signals from several (two to ten) neurons sur-
rounding the electrode (“multiunit activity,” illustrated in 
Figure 1). Microwire electrode tips used in extracellular record-
ing typically have diameters of 13–80 mm [16]. The 
Cyberkinetics implementation of the popular Utah silicon 
microelectrode array has conical electrode tips with radii of 3–5 
mm and lengths 35–75 mm. In such cases, spike sorting, the 
process of separating multiunit activity into groups of single-
unit activity, is necessary. 

Beyond the functional role that spike sorting serves, spike 
sorting is important in providing the data reduction required of 
on-chip, multichannel processors. Recent advances in data-
acquisition technology allow for the recording of hundreds of 
channels simultaneously, but a higher number of channels 
leads to a higher data rate. Harrison presents the example of a 
100-channel system using a sampling rate of 30 kSa/s and a res-
olution of 10 b, which would produce data at 30 Mb/s [17]. 
Wireless transmission at this data rate cannot be achieved 
under the strict power limits to which implantable electronics 
are subject. The present solution is to transfer data from the 
subject to a computer via thick cables. In the research setting, 
cables restrict the physical movement of subjects, thereby limit-
ing the quality and diversity of experiments that can be 

100 µm

[FIG1] The electrical signal recorded from a microelectrode is the 
sum of the postsynaptic and action-potential activity of many 
neurons in the surrounding area.

WHETHER THE APPLICATION 
IS BASIC SCIENCE RESEARCH OR 

MEDICAL TECHNOLOGY, THE SIGNALS 
FROM INDIVIDUAL NEURONS (“SINGLE-

UNIT ACTIVITY”) ARE OFTEN OF 
PARTICULAR INTEREST. 
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 performed. Furthermore, these cables can increase the severity 
of noise and motion artifacts seen in the recording. Performing 
spike sorting in implanted hardware such that only spike IDs 
are retained, as opposed to the entire raw data, would achieve 
enough data reduction to enable the wireless transmission of 
data, thereby eliminating the need for cables altogether. 

SIGNAL COMPOSITION
Let us begin by looking at the composition of the signals that 
are recorded by extracellular electrodes. These signals are usual-
ly prelowpass-filtered in the analog domain and then sampled at 
a rate of 20–30 kHz. Different cellular mechanisms are respon-
sible for different frequency components of the recorded signals. 
The high-frequency content (about 300–6,000 Hz) is referred to 
as unit activity, while the low-frequency signal content (below 
about 600 Hz) is referred to as local field potential. 

UNIT ACTIVITY
If unit activity is the signal of interest, as it is in this article, 
then the sampled signal is bandpass-filtered with a low cutoff 
frequency of 100–300 Hz and a high cutoff frequency of 3,000–
10,000 Hz. As indicated by its name, the source of this “unit 
activity” is action potentials from individual neurons. 

On some level, the action potential can be thought of as the 
discrete, binary event by which neurons communicate. Much 
of what we know about the mechanism was discovered in the 
seminal works of Hodgkin and Huxley [2]–[5]. Neuronal mem-
branes are impermeable to charged ions except at sites of 

ligand- and voltage-gated channels, which allow the passage of 
charged ions between the intra- and extra-cellular space. 
When the ion channels are closed or inactive, the concentra-
tions of potassium 1K1 2  and chloride 1Cl2 2  ions inside the 
cell are high relative to oustide the cell, while the concentra-
tion of sodium 1Na1 2  ions is high outside the cell relative to 
inside the cell. At rest, the cell membrane potential, defined 
with respect to the inside of the cell, is about 270 mV. When a 
cell’s membrane is depolarized, e.g., by excitatory synaptic 
input, this depolarization “activates” (opens) the Na1 chan-
nels, causing Na1 ions to rush into the cell along the concen-
tration gradient. This influx of Na1 causes the membrane to 
become even more depolarized, consequently causing more 
Na1 channels to become activated. Eventually the membrane 
potential reaches threshold, at which point external input is 
no longer needed to depolarize the cell, and the positive feed-
back caused by the Na1 current continues the depolarization 
at an even faster rate. This sharp influx of Na1 into the cell 
results in the rising phase of the action potential shown in 
Figure 2(a). Once the cell reaches a peak depolarization of 
about 40 mV, two things happen: the Na1 channels become 
“inactivated” such that no more Na1ions can pass through, 
and the voltage-gated K1 channels open. Now, K1 ions flow 
out of the cell along the concentration gradient, and the cell 
membrane begins to “hyperpolarize”; this efflux of K1 results 
in the falling phase of the action potential [Figure 2(a)]. This 
hyperpolarization  continues until the cell has returned to its 
resting potential. In some cases, the hyperpolarization is 
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[FIG2] Parts (a) and (b) are adapted from [18] (used with permission). (a) Illustration of the change in membrane potential during a 
typical action potential. (b) Illustration of the corresponding change in potential as seen by an extracellular electrode. Note the 
difference in vertical-axis scales. (c) Diagram of a neuron. Action potentials begin at the axon hillock and propagate down the axon. 
Depolarization of the axon terminal then triggers the release of neurotransmitters into the synaptic cleft, in turn depolarizing the 
postsynaptic cell.
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 followed by a slow after-hyperpolarization, where the resting 
potential is overshot, before the membrane potential returns 
to rest. The action potential usually begins at the axon hillock, 
near the cell body (soma), and propagates down the axon 
[Figure 2(b)]. Depolarization of the axon terminal then trig-
gers the release of neurotransmitters into the synaptic cleft 
(the gap between the presynaptic cell’s axon terminal and the 
postsynaptic cell’s dendrite), in turn depolarizing the postsyn-
aptic cell. It is in this way that neurons communicate with 
each other. 

Extracellularly recorded action potentials are called spikes. 
(The terms action potential and spike are sometimes used 
interchangeably; to be precise, however, we will use action 
potential to refer to the intracellular event and spike to 
refer to the captured extracellular waveform.) As shown in 
Figure 2(b), a spike looks slightly different from an intracellu-
lar action potential. First, because the recording electrode is 
placed outside of the cell rather than inside the cell, the polar-
ity is reversed. Second, the filtering properties of the extracel-
lular medium result in an extracellular signal that is about 
two to three orders of magnitude smaller than the correspond-
ing intracellular signal (z10 to 100 mV compared to z10 mV). 
Third, because the membrane acts like a resistor and capacitor 
in parallel, that is, a highpass filter [Figure 3(a)], the recorded 
extracellular potential is approximately equal to the derivative 
of the intracellular potential [19]. 

The shape of the intracellular action potential depends on a 
number of cell properties, including the cell type, the cell 
geometry, and the ion-channel distribution. This shape is gener-
ally considered to be constant for a given neuron, except in spe-
cial cases such as burst (high-frequency) firing. Since the 
extracellular waveform is directly related to the intracellular 
waveform, the extracellular spike shape also depends on these 
properties, as well as on the position of the recording electrode 

relative to the cell, on the distance of the electrode from the 
cell, and on interference from other nearby neurons (back-
ground noise). This biological noise is the largest source of 
noise in a neural recording, having amplitudes approaching 
that of the unit activity. But the recording hardware itself, 
including the electrode, the amplifier, and the ADC, also adds a 
significant amount of noise, the scale of which is largely depen-
dent on the given circuit implementation. It is usually assumed 
that the signal and the noise are statistically independent 
and that they sum linearly. Thus, in a given recording session 
where the electrode placement is assumed to be constant rela-
tive to the tissue, we assume that the extracellular spike shape 
for each neuron can be modeled as a deterministic waveform 
plus random noise. Note that while the recording noise usually 
is Gaussian, the background noise typically is not [21]. 

Spike trains can be treated as point processes with arrival 
times following a Poisson distribution. A neuron’s firing rate, 
the frequency at which it generates action potentials, depends 
on the cell type and brain area. Neurons in the visual cortex, for 
example, which are either silent or firing at a base frequency of 
around five spikes per second (or simply Hz), respond to their 
preferred stimulus with firing rates of about 15–75 Hz [22]. A 
bursting neuron, on the other hand, can fire as many as 300–
800 spikes per second [23]. 

LOCAL FIELD POTENTIALS
While local field potentials (LFPs) are not the focus of this 
article, a brief discussion of their properties is warranted here. 
We will also refer to these signals again later when we discuss 
alternative methods of decoding neural signals for brain–
machine interfaces (BMIs). 

A comprehensive description of the physiological basis for 
LFP was provided by Buzsáki and Traub in [24]. To summa-
rize, LFPs come from several sources, the most significant of 
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[FIG3] (a) A simple electrical-circuit model of extracellular recording [20]. Assume that an intracellular electrode is placed inside the cell, 
an extracellular electrode is placed outside but near the cell, and the reference electrode is placed very far away from the cell. The 
extracellular material can be modeled as pure resistance, while the cell membrane can be modeled as a resistor and a capacitor in 
series. The cell membrane highpass-filters the action potential signal, such that the extracellulary recorded signal (vex) is approximately 
equal to the derivative of the intracellularly recorded signal (vin) [19]. (b) As the broadband signal passes through the extracellular 
medium, the capacitive membranes of nearby cells attenuate its high-frequency components. (Part (a) used with permission from 
Rockefeller University Press.) 
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which is synaptic activity. Because the capacitive lipid mem-
branes of cells in the brain act as a lowpass filter, the high-fre-
quency components of neuronal signals are greatly attenuated 
as they travel through the extracellular medium; equivalently, 
slow signals are able to propagate much farther than are high-
frequency signals [Figure 3(b)]. As a result, the low-frequency 
component of the signal recorded at any given point within 
the brain is a linear sum of the activity from large populations 
of cells. Thus, LFP can be interpreted as an indication of the 
“cooperative actions” of neurons. 

Note that this signal is referred to as “LFP” when recorded 
by a microelectrode inserted into the brain (hence the “local” 
in LFP) but as “EEG” if recorded using scalp electrodes and as 
“electrocorticography (ECoG)” if recorded using epidural or 
subdural grid electrodes. Some scientists favor using ECoG 
and EEG because these methods are less invasive and easier to 
perform. However, because LFPs must propagate through a 
capacitive medium on their way to these recording sites, EEG 
and ECoG are actually “spatially smoothed” versions of the 
LFP. As such, EEG and ECoG contain very little information 
about the activity of the neurons that actually generate the 
signals. Furthermore, scalp and dural grid electrodes are only 
sensitive to signals originating in the superficial layers of the 
cortex; contributions to the signal from neurons in deeper lay-
ers of the cortex and from subcortical areas are virtually negli-
gible. Thus, extracellular recording, which provides the 
experimenter with LFP measurements as well as unit activity, 
is the experimental technique most capable of providing infor-
mation about the cooperative actions of neurons at high tem-
poral and spatial resolutions. 

SPIKE SORTING
To obtain (multi)unit activity, the extracellular data is first band-
pass filtered to remove the LFP and high-frequency noise (as 
described in the section “Unit Activity”). To then obtain single-
unit activity, we must perform spike sorting by sending this raw 
data into the signal-processing chain shown in Figure 4. The first 
steps are spike detection, the process of separating spikes from 
background noise, and alignment, the process of aligning all 
detected spikes to a common temporal point relative to the spike 
waveform. Once the spikes have been identified, spike sorting 
can take place. 

Most spike sorting methods—relying heavily on the previous-
ly mentioned assumption that each neuron produces a different, 

distinct shape (as seen by the electrode) that remains constant 
throughout a recording session—are based on spike waveform 
information. Thus, the first step in such methods is feature 
extraction, in which spikes are transformed into a certain set 
of features, such as principal components, that emphasize the 
differences between spikes from different neurons as well as the 
differences between spikes and noise. After feature extraction, 
some form of dimensionality reduction typically takes place, in 
which feature coefficients that best separate spikes are identified 
and stored for subsequent processing while the rest are discard-
ed. Finally, spikes are classified into different groups, corre-
sponding to different neurons, based on the extracted feature 
coefficients; this process is referred to as clustering. The result, 
the signal of interest to the experimenter and to BMIs, is the 
train of spike times for each neuron. This information can be 
represented graphically by a raster plot, where ticks are drawn to 
indicate spike occurrences versus time, as shown in the right-
most plot of Figure 4 for three neurons. 

CLASSIFYING SPIKE-SORTING ALGORITHMS
Spike-sorting methods can be categorized according to a num-
ber of different characteristics. The first is the level of autono-
my: methods can be “automatic/unsupervised” (fully 
autonomous) or “manual” (not at all autonomous). Automatic 
or unsupervised methods require no user input, while manual 
methods require constant supervision by an operator. Methods 
can also fall anywhere between these two extremes; a “semiau-
tomatic” method is a method with both a manual stage and an 
automatic stage. For example, detection methods that require 
the manual setting of a threshold, or window-discriminator 
methods that require the manual definition of windows, but 
that then work automatically may be considered semiautomat-
ic [25], as well as classification methods that require the user 
to manually reassign clusters after automatic cluster determi-
nation [26]. For neural prosthetic applications, spikes must be 
sorted in real time, thus precluding manual spike sorting. And 
because of the growing amount of data resulting from an 
increase in the number of simultaneously recorded channels, 
manual spike sorting is no longer a viable option in research 
settings either. Therefore, automatic methods are now usually 
required. 

A second way to classify spike-sorting algorithms is by wheth-
er or not they are real time (also called online). The standard 
practice for many years has been to first record and store all the 
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[FIG4] The signal processing chain used to obtain single-unit activity.
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data and then to perform spike 
sorting offline after the experi-
ment. As a result, many of the 
spike-sorting methods that have 
been developed rely on access to 
all of the data at once. When 
using principal component analysis (PCA), for example, the prin-
cipal components are often calculated using all of the detected 
spikes, and then each spike is projected onto these basis vectors 
before the actual classification takes place. It is increasingly com-
mon, however, for applications that require spike sorting to 
require that the spike sorting occur in real time. This require-
ment renders a number of hitherto commonly used methods 
inadequate. A compromise would be to modify offline algorithms 
to include an offline training period followed by a real-time clas-
sification period. 

The third attribute by which spike-sorting methods can be 
categorized is adaptivity. As we will describe later, extracellular 
signals are not always stationary. In such cases it would be bene-
ficial to use an algorithm that can adapt to a changing environ-
ment, as opposed to a static algorithm. There can be 
intermediate cases on this scale as well. For example, a static 
algorithm that requires a training period can be made adaptive 
by retraining it periodically. 

Clustering algorithms specifically can also be classified as 
either parametric or nonparametric. Koontz et al. define a non-
parametric clustering algorithm as “an algorithm for clustering 
multivariate data which is not based on a parametric model of an 
underlying probability density function. In particular, a nonpara-
metric algorithm should identify clusters of arbitrary shape and 
size” [27]. In other words, any algorithm that assumes a certain 
structure to the data or that is biased towards a particular cluster 
shape, such as spherical or ellipsoidal, will be considered para-
metric. The underlying probability density function for neural 
data is not known a priori (see the section “Non-Gaussian 
Noise”), so nonparametric clustering algorithms are highly 
desirable. 

Early spike-sorting algorithms were very simple, but not 
very accurate. In general, the more complex the method, the 

better the performance. This 
inherent tradeoff  between 
 algorithm accuracy and com-
plexity leads to another charac-
teristic by which to classify 
algorithms: the accuracy–com-

plexity measure. As we described in the introduction, many 
applications require spike sorting in implantable hardware. 
Any implantable hardware is subject both to strict power-den-
sity constraints and to high reliability requirements. Thus, it 
is crucial to choose the spike-sorting methods with the opti-
mal balance between accuracy and complexity to implement in 
hardware. As a step in that direction, our research group has 
performed such an analysis by evaluating a handful of meth-
ods using a biologically based, unbiased data set covering a 
wide range of SNRs [28], [29]. This work has allowed us to 
build a low-power (130-mW), 64-channel digital signal proces-
sor (DSP), which includes spike detection, alignment, and fea-
ture extraction [30], as well as a low-power (75-mW), 
16-channel DSP, which includes spike detection and on-the-fly 
clustering [31], both of which are suitable for use in a real-
time, implantable neural-recording system. 

In the next section, we will give some examples of algorithms 
that have been used for each step of spike sorting. We will also 
mention some alternative methods, mostly statistical/probabalis-
tic in nature, that do not conform to the block diagram shown in 
Figure 4. 

OVERVIEW OF SPIKE-SORTING ALGORITHMS
Note that Lewicki provided a nice review of spike-sorting meth-
ods in 1998 [32]. Here, we provide a relatively high-level descrip-
tion of the evolution of spike-sorting techniques as well as an 
update of more recent algorithms, and we present them in the 
context of hardware spike sorting. 

DETECTION
Nearly all detection methods involve two main steps: the pre-
emphasis of the signal and the application of a threshold. Spike-
detection methods vary in how the signal is pre-emphasized and 
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[FIG5] Examples of pre-emphasized signals and threshold values (dashed red lines) for three different detection methods. (a) Absolute-
value, (b) NEO, and (c) DWT product [34]. 
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in how the threshold is determined [36]. All of these methods 
run automatically given the detection threshold, so whether or 
not the algorithm is fully automatic depends on whether or not 
the threshold can be determined automatically. All of these 
methods are also real time (save a small delay for buffering 
spikes) given the detection threshold, but automatic calculation 
of the threshold usually involves a training period. 

The early days of spike sorting came in a time before digital 
computers. Processing was done purely in analog hardware. As a 
result, spike-sorting methods were relatively primitive. Spike 
detection was typically performed using a simple voltage trigger 
or Schmitt trigger, where the voltage threshold was set manual-
ly by the user. Any time the voltage signal crossed that thresh-
old, a pulse would be generated to indicate the presence of a 
spike [32]. Or, if the user needed the spike waveforms for subse-
quent spike sorting, a threshold crossing would trigger the cap-
ture of the spike waveform. This method is appealing because of 
its simplicity, and, as a result, is still used today by many experi-
menters. Some researchers have modified this method to 
include an absolute-value operation before the compare (or, 
equivalently, a compare to 6  threshold, as shown in Figure 5), 
and to include automatic calculation of the threshold [33]. 

Another class of spike-detection algorithms is based on 
detecting changes in the energy of the signal. One such algo-
rithm is called the nonlinear energy operator (NEO) or the 
Teager energy operator (TEO). Originally described in [35], the 
NEO has been proposed for use in spike detection by [36]–[38]. 
In discrete time, the NEO c is defined as 

 c 3x 1n 2 45 x2 1n 2 2 x 1n1 1 2 # x 1n2 1 2 ,  (1)

where x 1n 2  is a sample of the waveform at time n. The NEO is 
large only when the signal is both high in power (i.e., x2 1n 2  is 
large) and high in frequency (i.e., x 1n 2  is large while x 1n1 1 2  
and x 1n2 1 2  are small). Since a spike by definition is character-

ized by localized high frequencies and an increase in instanta-
neous energy [36], this method has an obvious advantage over 
methods that look only at an increase in signal energy or ampli-
tude without regarding the frequency. This can be seen in 
Figure 5, which shows that the NEO operation increases the 
SNR of the signal, making detection less sensitive to the detec-
tion threshold. Another advantage of this method is that it is rel-
atively simple to implement, whether in the digital or analog 
domain. 

Other spike-detection algorithms are based on template 
matching. If the spike waveforms of interest are known a priori 
to the user, then matched filters can be used to correlate the 
incoming signal with the spike templates; if the correlation 
crosses a certain threshold then a spike has been detected. With 
known cluster templates, this method can also be used for the 
actual spike classification. A related method is detection using 
the discrete wavelet transform (DWT). The DWT, which is ideal-
ly suited for the detection of signals in noise (e.g., edge detec-
tion, speech detection), has recently also been applied to neural 
spike detection (see [34], [39], and [40]). This method has an 
intuitive appeal in that it is similar to template matching, where 
we correlate the signal with a known waveform, only it is scale-
invariant. The DWT is also appealing because it can be imple-
mented using a series of filter banks, keeping the complexity 
relatively low. 

An example of one possible implementation is the DWT 
product [34]. First, the stationary wavelet transform (SWT) 
is calculated at five consecutive dyadic scales 1W 12 j, n 2 ,
 j5 1, c, 5 2 . Then the scale 2 jmax with the largest sum of 
absolute values is found 

 jmax5 argmax
j[53, 4, 56 aaNn51

0W 12 j, n 2 0 2 . (2)

From here, we calculate the point-wise product P 1n 2  (or 
“SWTP”) between the SWT at this scale and the SWTs at the two 
previous scales 

 P 1n 2 5 q
jmax

j5jmax22
|W 12 j, n 2 |. (3)

This product is then smoothed by convolving it with a Bartlett 
window w 1n 2  to eliminate spurious peaks, and a threshold is 
applied. The threshold Thr can be set automatically to a scaled 
version of the mean of this result: 

 Thr5 C
1
Na

N

n51
w 1n 2  * P 1n 2 ,  (4)

where N is the number of samples in the signal and C is a con-
stant. Once again, Figure 5 shows that the pre-emphasized DWT 
signal has an increased SNR compared to the original signal, 
making detection less sensitive to the detection threshold. 

In [29], we performed an analysis of accuracy versus com-
putational complexity (logic and memory requirements) for 
various spike-sorting methods. The results of this analysis are 
reproduced in Figure 6, where the hardware cost has been 
normalized as follows. First, the number of operations per 
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the mean classification accuracy after fuzzy c-means (the fuzzy-
logic version of k-means) clustering, with error bars indicating 
the standard error of the mean. (Figure adapted from [29].)  
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second (NOPS) and the area were estimated for each algo-
rithm. These two metrics were then combined into a cost 
function so as to easily compare the complexities of different 
algorithms, as well as to provide a perspective on the com-
plexity of individual processing steps (e.g., detection, feature 
extraction) relative to other processing steps. As shown in (5), 
first the NOPS for each algorithm was normalized by dividing 
by the maximum NOPS of any algorithm. Second, the same 
was done for area. Finally, these two numbers were summed. 
Thus, the cost function has a range from zero to two, zero 
being least costly and two most costly. This figure shows that 
the absolute-value (“Abs.”) and NEO detection methods both 
have comparable accuracy and low complexity, with NEO at 
the knee of the curve. The results for the feature-extraction 
and dimensionality-reduction methods also displayed in this 
figure will be examined in later sections. 

 Normalized Costi5
NOPSi

max
i

 NOPS
1

areai

max
i

 area
. (5)

ALIGNMENT
When spike detection is performed in the digital domain, when-
ever the voltage signal crosses a threshold, a window is applied 
and a spike waveform is captured. At this point, each spike is 
essentially aligned to the point of the threshold crossing. 
However, sampling jitter combined with noise effects may leave 
features of interest, such as maximum and minimum values, 
misaligned. Because this temporal misalignment can have a 
nasty effect on spike classification, alignment should be per-
formed prior to classification. 

The alignment process usually begins by upsampling the sig-
nal (using an interpolation method such as cubic spline) to help 
reduce the effects of sampling jitter. Then, the signal is aligned 
to some event in time. The aligned spikes may be downsampled 
to the original sampling rate after alignment. 

The most common method of temporal alignment is to align 
each spike to the point of its maximum amplitude (Figure 7) 
[32]. Alignment to the point of maximum slope (Figure 7) has 
also been proposed [41], which is intuitive since the rising slope 

of the action potential has biological significance (Figure 2), 
unlike the peak amplitude. This method would be especially con-
venient if discrete derivatives (DDs) (described in the section 
“Feature Extraction”) were already being used for feature extrac-
tion. Others have proposed alignment to the maximum of an 
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energy measure such as the NEO 
[42], which would be convenient 
if NEO were already being used 
for spike detection. Similarly, 
alignment to the maximum inte-
gral [43] would be convenient if 
the integral transform (IT) 
(described in the next section) 
were being used for feature 
extraction. Indeed, it would be convenient to perform alignment 
with respect to any measure that is already being calculated in 
the sorting process. 

Although the aforementioned alignment methods will usual-
ly improve classification accuracy, alignment to a metric that is 
derived from the whole spike rather than from a single point 
may be less susceptible to the effects of background noise. One 
example of such a metric is the spike’s center of mass [44]. Note 
that all of the algorithms that have been described in this sec-
tion are completely automatic and real time. 

FEATURE EXTRACTION
Feature-extraction methods were also primitive in the early 
days of spike sorting. Often only very simple features such as 
the maximum spike amplitude, peak-to-peak amplitude, and 
spike width were used [32]. This approach, although simple, is 
quite susceptible to noise as well as to intrinsic variations in 
spike shapes. 

In the 1970s, as digital computers gained popularity and 
processing capacity, researchers began using more sophisticated 
algorithms for feature extraction, such as PCA [45]. In PCA, the 
orthogonal basis [i.e., the “principal components” (PCs)] that 
captures the directions in the data with the largest variation is 
calculated by performing eigenvalue decomposition of the 

 covariance matrix of the data. 
Each spike is then expressed as a 
series of PC coefficients ci 

 ci5 a
N

n51
PCi 1n 2 # s 1n 2 ,  (6)

where s is a spike, N is the num-
ber of samples in a spike/PC, and 
PCi is the ith PC (Figure 8). 

These coefficients are then clustered to obtain the spike classi-
fications. This method raised the bar on the classification per-
formance that could be achieved, especially for noisier data. An 
added bonus is that, because most of the variance is captured in 
the first few components, the dimensionality can be reduced by 
only keeping the first two or three PCs, thereby reducing the 
computation time of PC coefficient calculation and of subse-
quent clustering. Even today, PCA is the most trusted and most 
commonly used method of spike sorting. The downside to PCA 
is that it is not a  real-time algorithm. It is usually performed 
offline after the acquisition of the entire data set, but it can be 
modified to include a training period during which the PCs are 
calculated followed by a real-time PC-coefficient-calculation 
period. We confirmed in [29] that PCA achieves a high accuracy 
but at a high computational cost (Figure 6). 

Besides for spike detection, the DWT has also been proposed 
for feature extraction by [33]. The DWT should work well for 
feature extraction since it is a multiresolution technique that 
provides good localization in both time and frequency. As in 
PCA, performing the DWT on spike waveforms results in a set of 
“expansion coefficients,” which can then be clustered to achieve 
spike classification. Figure 6 shows that this method has a fairly 
high accuracy but a relatively high cost. 

Methods have also been developed with the accuracy–com-
plexity tradeoff in mind. One example is called the DD method 
and is like a simplified version of DWT [46]. DDs are calculated 
by computing the slope at each sample point, over a number of 
different time scales 

 ddd 1n 2 5 s 1n 2 2 s 1n2d 2 ,  (7)

where s is a spike and d is an integer related to the time scale. 
Our studies have shown this to be a reliable yet inexpensive 
method for spike sorting (Figure 6). An example showing how 
this method can emphasize differences between spike classes is 
shown in Figure 9 for synthetic data, where spikes have been 
colored according to the ground truth. 

Another such method is called the IT [47], in which spikes 
are classified based on the areas under the positive and negative 
phases of the spike, IA and IB, respectively 

 IA5
1

NA
a

nA1NA21

n5nA

s 1n 2  ,  IB5
1

NB
a

nB1NB21

n5nB

s 1n 2 ,  (8)

where s is the spike, nA is the first sample of the positive phase, 
NA is the total number of samples in the positive phase, nB is the 
first sample of the negative phase, and NB is the total number of 
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[FIG9] Sample results of feature extraction using DDs. For the 
synthetic data shown in (a), (b) spikes were detected and aligned 
and each spike was expressed by (c) three discrete derivative 
“coefficients.” Spikes have been colored according to the ground 
truth. (Figure adapted from [30].) 

IN THE 1970s, AS DIGITAL 
COMPUTERS GAINED POPULARITY 

AND PROCESSING CAPACITY, 
RESEARCHERS BEGAN USING 

MORE SOPHISTICATED ALGORITHMS 
FOR FEATURE EXTRACTION, 

SUCH AS PCA. 
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samples in the negative phase of 
the spike. NA, NB, nA, and nB are 
all determined by offline training. 
This method is appealing because 
of the simple hardware imple-
mentation presented. Since only two features are extracted from 
each spike (IA and IB), the resulting dimensionality of this meth-
od is two, and no dimensionality reduction is required before 
clustering. The drawback to this method is its poor performance 
(Figure 6), comparable to or worse than that of primitive meth-
ods of the early days. 

DIMENSIONALITY REDUCTION
Dimensionality reduction is a critical step in spike sorting for a 
number of reasons. The most obvious reason is that it will sig-
nificantly reduce the required memory and computational com-
plexity of clustering, resulting in significant reductions in the 
area and power of the spike-sorting hardware. Another obvious 
benefit is that it reduces the output data rate of spike-sorting 
hardware configured to output features only. A third reason that 
makes dimensionality reduction critical is that it improves the 
accuracy of clustering. Adding dimensions in clustering 
improves the performance only up to a certain point, after 
which adding more dimensions can cause the performance of 
the clusterer to degrade. One reason for this may be that dimen-
sions in which the data is not separated introduce noise or con-
fusion into the clusterer. 

The most primitive way that the dimensionality of features 
can be reduced is with uniform sampling, in which to reduce 
the dimensionality from N  to D, we simply choose D evenly 
spaced samples, for example, by choosing every N/Dth sample 
beginning with sample number D/2. This is essentially the same 
as choosing D random samples. As one might guess, this meth-
od is not very reliable (Figure 6, “Unif.”). 

A smarter way to choose the features that can best separate 
clusters, as shown in Figure 10, is by finding those features that 
have mulitmodal distributions across spikes, as multimodal dis-
tributions are an indication that more than one population (col-
lection of spikes from the same neuron) is present in the data 
set. Next, we present three dimensionality-reduction algorithms 
that use this approach. 

The first of these algorithms is called the Lilliefors test 
[48], a modification of the Kolmogorov-Smirnov test. The null 
hypothesis is that the data under question comes from any 
normally distributed population (whereas the Kolmogorov-
Smirnov test tests the null hypothesis that the data comes 
from a standard normal distribution). The basic steps of the 
test areas follows: 

1) Calculate the population mean and population variance of 
the data. 
2) Calculate the empirical distribution function (EDF) of 
the data. 
3) Test statistic: The maximum discrepancy between the EDF 
and the cumulative distribution function (CDF) of a normal 
distribution having the mean and variance calculated in 1).

The Lilliefors test has been 
used by [33] for dimensionality 
reduction in spike sorting, where 
the test statistic was used to find 
the coefficients whose distribu-

tions differed most from the normal distribution. The assump-
tion is that the null hypothesis will be rejected for coefficients 
with multimodal distributions but not for coefficients with uni-
modal distributions. Our study showed that this method has 
good performance but prohibitive complexity (logic and memory 
requirements) (Figure 6, “Lillie.”). 

Hartigan’s dip test [49], [50] is a statistical test that looks 
specifically for multimodality. The CDF of a unimodal distribu-
tion has only one mode and is convex before the mode and con-
cave after the mode. On the other hand, CDFs of multimodal 
distributions have more than one mode, and therefore have 
regions alternating between concave and convex. The basic 
steps in the dip test are as follows: 

1) Calculate the EDF of the data. 
2) Calculate the greatest convex minorant (GCM) and the 
least concave majorant (LCM). 
3) Test statistic: The maximum distance (“dip”) between the 
EDF and the GCM or LCM.
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Spike NS
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[FIG10] An illustration of how feature distribution information 
can be used in dimensionality reduction. For visualization 
purposes, we use the time samples of the spikes as features. In 
this example, the distributions of the amplitudes for samples 
one, two, and three are unimodal, so they would not be good 
choices of features to be used in clustering. Samples x and y, on the 
other hand, have bimodal distributions, indicating that clustering 
of these features would reveal the two underlying populations 
within the data.

DIMENSIONALITY REDUCTION IS A 
CRITICAL STEP IN SPIKE SORTING FOR A 

NUMBER OF REASONS. 
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The coefficients whose distri-
butions are “more multimodal” 
will have larger test statistics. 
Thus, we choose the coefficients 
that have the largest test statistics 
for use in clustering. Our study 
showed that this method also has 
good performance but an even greater hardware cost than the 
Lilliefors test (Figure 6, “Hart.”). 

We proposed an alternative to the above algorithms with com-
parable accuracy yet far less complexity in [29]. In the maximum-
difference test (illustrated in Figure 11), as in the Lilliefors test, 
we seek the coefficients with the most variability, only now under 
the limited-memory conditions typical of implantable hardware. 
For an initial feature dimensionality N, four N-sample arrays of 

memory are initialized to zero: 
maximum_difference, 

l o c a l _ d i f f e r e n c e , 

spike_new, spike_old. 
Throughout the training period, 
the ith iteration of the algorithm 
is as follows: 

1) Write the current feature samples to the array spike_
new. 
2) Subtract the values in spike_new, coefficient by coeffi-
cient, from the values in spike_old, and write the absolute 
value of the result to local_difference. 
3) Find the indices corresponding to the three largest values 
in local_difference. 
4) Increment the values in maximum_difference 
indexed by these three indices. 
5) Overwrite the values in spike_old with the values in 
spike_new.

These steps are repeated until the end of the training period. 
At this point, assuming that the goal is to reduce the dimen-
sionality from N to D, maximum_difference is scanned 
for the locations corresponding to the D largest values, and the 
coefficients corresponding to these indices are identified as the 
coefficients that will be used in clustering. Figure 6 (“Max. 
Diff.”) shows that this method is about three orders of magni-
tude less complex than both the Lilliefors test and the dip test 
yet even more accurate. 

CLUSTERING
Clustering, especially unsupervised clustering, is often the most 
difficult and most complex part of the sorting process. 

In the early days of spike sorting, the most common meth-
od of clustering was manual cluster cutting; extracted features 
were plotted on a scatter plot and cluster boundaries were 
defined by hand [32]. Even today, most commercial software 
packages for spike sorting provide the user with the capability 
to define cluster boundaries by drawing polygons in the cho-
sen feature space using a mouse pointer (see the example in 
Figure 12). But because this method is prone to human errors 
[25], [26], not to mention the time that is required of the oper-
ator, automatic and semiautomatic methods are desirable. 
Another primitive but at least semiautomatic technique is that 
of window discriminators, in which spike waveforms that 
intersect one or several user-defined windows are assigned to 
the same neuron. 

A more sophisticated method of clustering, which is now the 
benchmark clustering method in this field, is called k-means 
[51]. The k-means algorithm is based on a distance metric. The 
main steps of the algorithm are described in “k-Means 
Clustering.” The main benefit of using k-means is that it is a 
very simple and fast algorithm. However, a major drawback to 
this algorithm is that it is not unsupervised, as it requires the 
user to input k. For applications such as BMIs, the spike sorting 
must be completely automatic, so there will be no user to input 
this information. Moreover, even if there were a user, 
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[FIG12] Example of results of manual cluster cutting on PCA 
features.
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[FIG11] Example execution of the maximum-difference test. At 
the beginning of the algorithm, the first spike would be stored 
in spike_old and the second spike in spike_new. The 
difference between the two arrays is calculated and its absolute 
value stored in local_difference. The indices corresponding 
to the three largest values in local_difference are four, nine, 
and ten; the values in maximum_difference indexed by these 
indices are each incremented by one. These steps are repeated 
until the end of the training period, when we have the final 
value of maximum_difference. Assuming that we want to 
reduce the dimensionality from ten to three, we choose the 
features indexed by the indices corresponding to the three 
largest values of maximum_difference, four, five, and six, to be 
used in clustering.

CLUSTERING, ESPECIALLY 
UNSUPERVISED CLUSTERING, IS 

OFTEN THE MOST DIFFICULT AND 
MOST COMPLEX PART OF THE 

SORTING PROCESS. 
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 determining the number of neu-
rons is a nontrivial, often diffi-
cult task. Efforts are being made, 
however, to find ways of auto-
matically and reliably determin-
ing the number of neurons in a 
recording [52]; perhaps these 
techniques could be used to ini-
tialize k-means, making it a fully unsupervised algorithm. 
Another drawback of k-means is that it is not real time, making 
it unsuitable for real-time applications. A compromise would be 
to adapt the algorithm to have a training period, where the clus-
ter centroids are defined, followed by a real-time classification 
period, but this would only be appropriate for stationary data. 
Yet another drawback of this algorithm is that it is parametric; 
since each point is assigned to a cluster based solely on its 
Euclidean distances from the cluster centroids, the determined 
clusters will necessarily be spherical. There are many instances 
when the distribution of neural data will not be spherical. For 
example, during electrode drift, data tends to form ellipsoidal 
clusters. K-means would force spherical clusters, possibly divid-
ing ellipsoidal clusters into two. 

One unsupervised clustering algorithm is called valley 
seeking [53]. The idea in valley seeking is to first calculate the 
normalized density derivative (NDD) and then to find the 
peaks of this function. The cluster boundaries are then identi-
fied as the regions between the peaks (i.e., the valleys). An 
overview of the algorithm is provided in “Valley-Seeking 
Clustering.” The benefits of the valley-seeking algorithm are 
that it is unsupervised (not even the number of clusters is 
required to be provided by the user) and nonparametric, giv-
ing it the ability to cluster data sets that have nontrivial 
shapes, such as donuts and spirals. The algorithm is not real 
time, however, making it unsuitable for real-time applications. 
Additionally, from a hardware point of view, the algorithm has 
the serious drawback of high complexity. It requires the com-
putation and storage in memory of at least six NS-by-NS matri-
ces, where NS is the number of spikes being clustered. For 
large values of NS valley seeking may not be a viable choice for 
hardware implementation. 

Superparamagnetic clustering (SPC) [54] is another unsu-
pervised clustering algorithm that has found application to 
spike sorting [33]. In SPC, the data is modeled as a granular 
magnet, where each point is assigned a spin. The model is 

heated from low temperatures 
to high temperatures. At very 
low temperatures, all the spins 
will be aligned; this is referred 
to  as  the  “ ferromagnet ic 
region.” At high temperatures, 
the system is disordered and all 
the spins are random; this is 

called the “paramagnetic region.” At temperatures that lie 
between these regions (called the “superparamagnetic 
region”), spins within the same high-density region are 
aligned while the spins of different high-density regions are 
not aligned; here the clusters are revealed. A summary of the 
algorithm steps is provided in “SPC.” 

SPC has benefits similar to those of valley seeking: it is 
unsupervised (again, no a priori knowledge of the number of 
clusters is required) and nonparametric. It also has the 

k-MEANS CLUSTERING
1) Define k (number of clusters/neurons). 
2) Randomly define the k cluster centroids. 
3) Assign each data point to the cluster with the closest 

(usually by Euclidean distance measure) centroid. 
4) Recompute each cluster centroid as mean of that cluster.
Steps 3–4 are repeated until a convergence criterion 
(either that the assignments stop changing or that the 
maximum number of iterations has been reached) is met. 

VALLEY-SEEKING CLUSTERING 
Definitions. Let x and x r be two data points. Denote the 
neighbor number (NN) of x r with respect to x  as 
NN 1x, x r25k and NN 1x r,x 25l. Denote the ith neighbor of 
x  a s  x1i2,  i . e . ,  NN 1x, x1i2 2 5 i,  a n d  NN 1x1i2,x 2 5 a1i2,
 i5 1,2, c,k21. Similarly, denote the jth neighbor of x r 
as x r1 j 2 , NN 1x r,x r1 j 2 2 5 j, NN 1x r1j2,x r 2 5 b1 j2, j5 1,2, c,l21. 
Algorithm steps: 
1) Input threshold parameters t1, t2, and t3. 
2) Calculate the Euclidean distance matrix D5 1dij 2 . 
3) Determine the neighbor number (NN) matrix L5 1 lij 2 , 
where lij5NN 1xi, xj 2 . 
4) Calculate the matrix S5 1sij 2 , where 

sij5
1 lij1 lji 2

2
.

5) Estimate the NDD matrix J5 1Jij 2 , where 

 Jij5
0 lij2 lji 0
sij

111/d
, sij # t1.

and d is the dimensionality of the feature space. 
6) Estimate the convexity D25 1d2ij 2 , where 

 d2ij5

lija
k21

i51
a1i21 ljia

l21

j51
b1 j2

lija
k21

i51
i1 ljia

l21

j51
j

, sij # t1.

7) Determine the discretized connectivity matrix C5 1cij 2 , 
where 

 cij5 I 1sij # t1, Jij # t2, d2ij # t3 2
 is the indicator of whether xi and xj belong to the 

same cluster 
8) Assign cluster labels to observations according to the 
discretized connectivity matrix.

SPC HAS BENEFITS SIMILAR 
TO THOSE OF VALLEY SEEKING: IT 
IS UNSUPERVISED (AGAIN, NO A 

PRIORI KNOWLEDGE OF THE NUMBER 
OF CLUSTERS IS REQUIRED) AND 

NONPARAMETRIC.
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same major drawback: complexity. It requires the computa-
tion of at least nine NS-by-NS matrices, where NS is the 
number of spikes being clustered. Again, a large NS requires 
a prohibitive number of operations and amount of memory. 
SPC also requires a Monte Carlo simulation, which increas-

es the computation time. The algorithm can be simplified by 
using a mean-field approximation in place of the Monte 
Carlo simulations. But although this simplification reduces 
the run time, it actually increases the complexity. 
Furthermore, like the valley-seeking method, SPC is an 
offline algorithm. Thus, SPC is also not a practical choice 
for hardware implementation. 

The only clustering algorithm known to the authors at 
this time that is both automatic and online and that has a 
good accuracy–complexity tradeoff is called Osort [55]. This 
method was developed by researchers who needed to isolate 
single neurons during their experiments, which requires 
processing large amounts of data in real time. Out of neces-
sity, they proposed a much simpler way of clustering, where 
each data point is assigned to a cluster “on-the-fly.” The 
algorithm is described in “Osort Clustering.” This method of 
clustering appears to be extremely efficient. Very little mem-
ory is required. Therefore, of the three  unsupervised cluster-
ing algorithms presented here, this method is the only one 
suitable for implementation in hardware. The main draw-
back to this method is that, like in k-means, it bases its deci-
sions on a distance metric, essentially assuming a spherical 
distribution of data. So while it can track spherical clusters 
moving in time to form ellipsoidal clusters, it cannot resolve 
a stationary ellipsoidal cluster (which would result, for 
example, from multivariate noise). 

An example showing the results of clustering using valley-
seeking clustering, SPC, and Osort is shown in Figure 13. 
Valley seeking and SPC give similar results, whereas Osort 
appears to overcluster—that is, to find too many clusters, or 
to divide a single-unit cluster into subclusters. A summary of 
various characteristics of each of the algorithms described in 
this section is given in Table 1. 

OSORT CLUSTERING 
1) Initialization: Assign the first data point to its own 

cluster. 
2) Calculate the Euclidean distance between the next 

data point and each cluster centroid. 
3) If the smallest distance is less than the merging 

threshold TM, assign the point to the nearest cluster 
and recompute that cluster’s mean using the N most 
recent points. Otherwise, start a new cluster. 

4) Check the distances between each cluster and ev-
ery other cluster. If any distance is below the sorting 
threshold TS, merge those two clusters and recom-
pute its mean.

Steps 2–4 are then repeated indefinitely. In the simpli-
fied version of this algorithm, TM5 TS, which is equal to 
the variance of the data computed continuously on a 
long (z1 min) sliding window. Note that when comput-
ing cluster centroids, only the N most recent points are 
used. This helps to account for electrode drift, since the 
clusters are allowed to drift as well. 

SPC 
1) Calculate the Euclidean distance matrix D5 1dij 2 . 
2) Identify the K nearest neighbors of each point vi. vi 

and vj are considered neighbors iff vi is one of the K 
nearest neighbors of vj and vj is one of the K nearest 
neighbors of vi. 

3) Assign a Potts spin si5 1, 2, c, q to each point vi 
randomly (or set all si5 1), where q is a constant rep-
resenting the number of possible spins. Note: The 
value chosen for q does not imply anything about 
the number of clusters. The authors of [54] used 
q5 20. 

4) Calculate the interaction strength Jij between neigh-
boring points vi and vj, where 

 Jij5 •
1
K

expa2 dij
2

2a2b if vi and vj are neighbors, 

0 otherwise,

and a is the average of all dij’s between neighboring 
points. 
5) For each temperature (e.g. T5 0:0.02 :0.2), perform 

the following Monte Carlo simulation; of iterations 
m5 1: M: 
a) Assign a frozen bond between nearest-neighbor 

points vi and vj with probability: 

 pi,j
f 5 12expa2Jij

T
# dsi,sj

b, 

   where dsi, sj
5 e1 if si5 sj, 

0 otherwise.

b) Generate a random number x from a uniform 
distribution on 30, 1 4. If x , pi, j

f , there is a; bond 
between vi and vj. 

c) Define clusters as all points that are connected 
by a bond. 

d) Define cm, where 

 cij
m5 e1 if vi  and vj  are in the same cluster, 

0 otherwise.

6) Calculate the two-point connectedness Cij, where 

 Cij5
1
M

 a
M

m51
cij

m.

7) Calculate the spin-spin correlation function: 

 Gij5
1q21 2cij11

q
.

8) If Gij . u, where u is a predefined threshold, vi and vj 
belong to the same cluster. 

9) Assign cluster labels to observations according to G.
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ALTERNATIVE METHODS 
FOR SPIKE SORTING
While most spike-sorting methods to date involve feature 
extraction followed by clustering of these features using 
nonparametric, nearest-neighbor methods as described 
above, other, more sophisticated methods have been devel-
oped based on Gaussian mixture models [44], [56]–[58] or 
t-distribution mixture models [59] in attempt to provide 
optimal solutions to the clustering problem based on sta-
tistics and probability theory. Many of these methods 
involve calculating a noise model for a particular data set, 
performing noise whitening, and using Bayesian or maxi-
mum-likelihood estimation. 

An example of one such method was presented in [58]. 
In summary, the method begins with calculating an empiri-
cal model for the recording noise and using this model to 
perform noise whitening on the data. Next, a “data genera-
tion model” (which includes the number of clusters and 
their positions in the event space) that maximizes the a 
posteriori probability to observe the samples that are actu-
ally observed (i.e., to maximize the likelihood function) is 
calculated as follows: 

1) Specify a model M by specifying the number of neurons K, 
their discharge frequencies pj,  j5 1, c, K, and their tem-
plate waveforms uj,  j5 1, c, K. 

2) Compute the probability for unit (neuron) j to have gener-
ated the event (spike) ei, p 1ei|uj 2 , as follows: 

a) Define the residual vector Dij5 ei2 uj. 
b) Then p 1ei|uj 2 5 1/ 12p 2D/2 # exp 1 2 1/2 # D ij

T Dij 2 , where 
D is the dimensionality of the event space.

3) Calculate the probability Pi for the model to have generat-
ed event ei : Pi5 gK

j51pj
# p 1ei|uj 2 , where pj is the probability 

for unit j to occur. 
4) Maximize the a posteriori probability, P 1S ; M 2 5 wN

i51Pi, 
or the likelihood function, L 1S ; M 2 5 gN

i51 ln Pi. 
5) Use an iterative algorithm such as expectation-maximiza-
tion to maximize L.
Once the model is established, each event ei is attributed to 

one of the K units by finding the j that minimizes |Dij|
2, which 

is equivalent to choosing the unit with the highest probability 
to have generated the event. 

The assumptions built in to this method are that the spike 
waveforms generated by a given neuron are constant, that the 
signal and the noise are statistically independent, that the sig-
nal and the noise sum linearly, and that the noise is well 
described by its covariance matrix. Nonstationary noise would 
violate this last assumption, but the authors claim that in such 
cases several noise covariance matrices could be used succes-
sively to describe the noise. The same assumption would be 
violated if the noise covariance matrix were to have third or 

SPC

Cluster
Means

Valley-Seeking Clustering Osort Clustering

(b)(a) (c)

All
Spikes

100 µV

0.5 ms

[FIG13] Example results from clustering 30 s of real data (human entorhinal cortex) using three different clustering methods. Note that 
for the valley-seeking and SPC methods, PCA was performed for feature extraction prior to clustering, whereas Osort uses only time-
domain samples for clustering by default.

[TABLE 1] SUMMARY OF CLUSTERING ALGORITHM CHARACTERISTICS.

MANUAL WINDOW DISCRIMINATORS k-MEANS VALLEY SEEKING SPC OSORT

NONPARAMETRIC NO YES NO YES YES NO 
AUTOMATIC/UNSUPERVISED NO NO NO YES YES YES 
REAL-TIME/ONLINE NO YES NO NO NO YES 
ADAPTIVE NO NO NO NO NO YES 
ACCURACY LOW+ ? 0.90* 0.74* 0.85* 0.74* 
COMPLEXITY – – LOW HIGH HIGH LOW 
+[26], * [31]
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higher order moments. However, the authors showed that, at 
least for their data, the background noise is well described by 
its covariance matrix. 

CHALLENGES IN SPIKE SORTING

NO GROUND TRUTH
There are many unique characteristics of neural recording that 
make classification of neural data more difficult than for other 
types of data. One such charac-
teristic is that there is almost 
always a lack of any sort of 
“ground truth.” Many popular 
classification techniques, such as 
support vector machines, rely on 
a training period that uses 
known data to define cluster 
boundaries before the automatic 
classification period begins. In extracellular recording, however, 
experimenters typically must play a more passive role; we can 
only observe the neural activity, we cannot influence it. (Neural 
activity can be influenced by electrical stimulation, but usually 
not with single-cell precision.)Thus, we have no ground truth to 
be utilized in training the algorithms. 

The lack of a ground truth also makes it nearly impossible to 
quantify the performance of the classifier. Let’s revisit the prob-
lem, illustrated in Figure 1. The recording electrode is inserted 
into the neural tissue. Although each neuron in the tissue is 
generating its own, often independent, train of spikes, the 
recording electrode receives only the sum of the activity from 

all neurons in its vicinity. We want to use spike sorting to sepa-
rate the composite signal into the individual spike trains. Now 
consider an analogous problem in classical communications 
theory. Let’s say we want to quantify the performance of an 
error-correcting code (spike-sorting algorithm). To do so, we 
would generate a known test vector (signals from individual 
neurons), encode the signal, corrupt it with noise (mix the sig-
nals from individual neurons together), decode the signal (per-
form spike sorting), and finally calculate the bit error rate 

(classification performance) as 
the percentage of correctly 
received bits (percentage of cor-
rectly classified spikes). The 
problem is that in extracellular 
recording, we have no control 
over, or even knowledge of, the 
input signals. If we have no 
access to known test vectors, 

how can we quantify the performance of the classifier? 
The best-known solution to this problem has been to per-

form simultaneous intracellular/extracellular recordings [60]. 
Although we still have no control over the input signals, the 
intracellular recordings at least provide us with some knowl-
edge of them, so we can to some degree evaluate the cluster-
ing performance. The problem with this method is that 
intracellular recordings are very difficult to make, and there 
are very few such data sets already in existence, making thor-
ough algorithm evaluations difficult. Furthermore, for each of 
the paired intracellular/extracellular recordings in [60], 
although the extracellular electrodes (tetrodes) may have 

Real Data
(Human 

Entorhinal Cortex)

Synthetic Data

20 ms
1 ms

(a) (c)

(b)

[FIG14] Examples of the synthetic data used in [28] and [29]. (a) Average spike waveforms used as templates in the test data sets, (b) 
sample of synthetic data generated from the spike templates in (a), and compare to real data from human entorhinal cortex in (c). 

THERE ARE MANY UNIQUE 
CHARACTERISTICS OF NEURAL RECORDING 
THAT MAKE CLASSIFICATION OF NEURAL 
DATA MORE DIFFICULT THAN FOR OTHER 

TYPES OF DATA.
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recorded signals from multiple neurons, only one neuron’s 
spikes were intracellularly confirmed. This limits the degree to 
which the accuracy of an algorithm can be assessed. Another 
solution to the problem has been to use a real data set that has 
been annotated by an expert according to spike occurrences 
and classes. However, studies have shown that the perfor-
mance of human operators is actually much lower than that of 
semiautomatic clustering tools [25], [26]. Therefore, it does 
not make sense to take the performance of a human operator 
as ground truth, particularly 
when calculating the accuracy 
of automatic methods that are 
likely to outperform the human 
operators. A third option has 
been to create biologically accu-
rate synthetic data sets, which 
would provide both a ground 
truth and the flexibility to 
manipulate the signal variance and feature complexity in a 
way that is not possible using real data [28], [29], [33], [55], 
[61], [62]. An example of the synthetic data used by our group 
to perform the algorithm evaluations in [28] and [29] is shown 
in Figure 14. 

An entirely different approach to evaluating the performance 
of spike sorting is to use post-processing techniques based on 
our knowledge of the statistical properties of firing neurons. For 
example, one can look at the distribution of interspike intervals 
(ISIs) for each neuron after spike sorting [32], [55], [63], [64]. 
Under most circumstances, after firing an action potential a 
neuron cannot fire again until after a refractory period, typically 
1–3 ms. An ISI histogram showing a significant number of sam-
ples fewer than 3 ms would indicate bad clustering (e.g., that 
spikes from two neurons were combined into one multiunit 
cluster, or that the cluster is a noise cluster). 

Tankus et al. developed a method specifically to identify a 
cluster as a single cell or multiple units [64]. This task is nor-
mally performed by human visual inspection of the distribu-
tions of spike waveforms around the spike mean (the variation 
around the mean for single units should be small). As such, 
their approach was to mimic the performance of the human 
classifier. The method is composed primarily of two parts. First, 
the ISI distribution of each cluster is examined as described 
above, and a cluster is declared multiunit if more than 1% of 
ISIs are fewer than 3 ms. For each remaining cluster, the vari-
ance of the spike waveforms around the main rise in voltage of 
the mean waveform is quantified. Then clusters whose variances 
exceed a certain threshold are also declared multiunit. 

Pouzat et al. also developed several additional clever post-
processing techniques, including the standard deviation (S.D.) 
test, the x2 test, and the projection test [58]. The idea behind 
the S.D. test is that, assuming that the spike waveform generat-
ed by a given neuron is constant and that the signal and noise 
sum linearly, the sample-by-sample S.D. over all the spikes from 
one cluster should be equal to the standard deviation of the 
noise. So after spike classification, any cluster whose S.D. differs 

significantly from the noise S.D. can be either further scruti-
nized or discarded. The x2 test tests the hypothesis that each 
cluster of spikes forms a D-dimensional Gaussian distribution. 
(In the next subsection, however, we will examine whether the 
assumption of this test is valid or not.) The test is performed by 
first calculating the squared D-dimensional distance of every 
spike in a given cluster from its cluster mean and then by 
checking whether or not this distribution follows a x2 distribu-
tion with D degrees of freedom. A distribution that deviates sig-

nificantly from the expected 
distribution may indicate the 
clustering of two similar units 
into one cluster. Finally, in the 
projection test, we again assume 
that the distribution of spikes in 
D-dimensional space should be a 
multivariate Gaussian with a 
covariance matrix equal to the 

identity matrix (assuming that noise whitening has been per-
formed, as in the section “Alternative Methods for Spike 
Sorting”), and that the projection of all spikes onto all possible 
axes joining any pair of units should form Gaussian distribu-
tions centered on the cluster centroids with standard devia-
tions equal to one. The “distinguishability” of any two given 
units can then be defined by setting a limit on the acceptable 
overlap between these two distributions, and a user can declare 
that units with less than a certain degree of distinguishability 
not be used in further analysis. This test also reveals when two 
clusters have been combined into one, as the projections 
between these two clusters will form a single Gaussian distri-
bution centered around the true cluster mean. 

NON-GAUSSIAN NOISE
Much of classical signal-detection theory is based on the 
assumption of channels having additive white Gaussian noise, 
and, as a result, most of the classical signal-detection tech-
niques have been built around this assumption. Noise in extra-
cellular recordings, on the other hand, has been shown to be 
both nonwhite [45] and non-Gaussian [21], [59], so many of 
these classical techniques cannot be applied. Even signal-detec-
tion techniques that do not assume Gaussian noise, just that 
the distribution of the noise is known, are difficult to apply to 
neural data due to a lack of accurate noise models, especially 
models that are valid across various experimental setups. 

NONSTATIONARITIES
To make matters worse, neural data can be nonstationary. Fee 
et al. showed both that background noise is nonstationary and 
that a neuron’s spike waveform varies as a function of the time 
since its preceding action potential [21]. This change in a neu-
ron’s spike waveform over time is especially dramatic during 
burst firing [32], [65], during which the peak amplitude of the 
spike will decrease, since it is firing before completely returning 
to its resting state. Other causes of nonstationarites are elec-
trode drift [32], [65], when the stiff electrode drifts within the 

AN ENTIRELY DIFFERENT APPROACH 
TO EVALUATING THE PERFORMANCE 
OF SPIKE SORTING IS TO USE POST-

PROCESSING TECHNIQUES BASED ON 
OUR KNOWLEDGE OF THE STATISTICAL 

PROPERTIES OF FIRING NEURONS.
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[FIG15] Parts (a)–(e) show an example of an MUA signal, 
compared to the raw signal, unit activity, and LFP. Signals in this 
figure were generated by the authors and plotted in the same 
manner as in [76].

fluid tissue with respect to the 
neurons being recorded, and cor-
tical pulsation due to heartbeat or 
respiration [65]. Despite all of 
these known contributors to non-
stationarity, data stationarity is 
still an assumption built into 
most spike-sorting methods. Until 
spike-sorting methods are developed to combat this problem, 
classification results will suffer. Efforts in this direction include 
[65] and [66]. 

OVERLAPPING SPIKES
A final, very tricky problem in spike sorting is that of overlap-
ping spikes. The refractory period forces a neuron to rest for at 
least 1 ms between successive action potentials. But remember 
that our recorded signal is the sum of signals from several 
nearby neurons that are assumed to be firing independently. 
Thus, it is possible for two different neurons to fire at or 
around the same time, such that their spikes overlap with one 
another in the recorded signal. At best, conventional spike-
sorting methods may be able to identify such a detection as an 

outlier and, therefore, to classi-
fy it as noise. At worst, this 
overlap would be misclassified 
entirely. Ideally, we would like 
to be able to detect when an 
overlap occurs and to resolve 
which neurons the overlapping 
spikes have come from. Some 

techniques have been developed towards this goal; see [41], 
[56], and [67]–[71]. 

SINGLE- VERSUS MULTICHANNEL-RECORDING 
SIGNAL PROCESSING
In multichannel recordings, adjacent channels sometimes 
receive activity from the same neurons. Examples of these types 
of multichannel recordings are stereotrode/tetrode recordings, 
where the recording probes (made from microwires) have two/
four closely spaced electrodes (z10 mm between centers). In 
these cases, correlations between channels can be exploited to 
separate single-unit activity, similarly to how triangulation can 
be used to determine the position of one object with respect to 
two other objects. Several algorithms have been developed to 
make use of this information, including independent compo-
nent analysis (ICA) [72]. 

The idea behind ICA is that if N sources (neurons) have been 
mixed onto N detectors (electrodes) using a linear combination, 
a matrix can be found to “unmix” the data such that each chan-
nel is independent from every other channel, i.e., each channel 
contains the spike train from each neuron. The assumptions 
behind this method are that, ideally, the number of electrodes 
equals the number of neurons (or, in the less ideal case, the 
number of detectors is greater than the number of sources), and 
that each neuron is seen by at least two electrodes. This meth-
od, when it can be applied, has many benefits, including the 
ability to automatically detect artifacts and overlapping spikes 
and to correctly sort spikes from a neuron whose amplitude 
changes with time (i.e., to handle waveform nonstationarities). 

Note that multichannel silicon arrays have much larger 
spacing between electrodes (z400 mm for the Utah array [73]), 
so it is much less likely for the same neuron to be recorded on 
two channels here. As such, algorithms exploiting correlations 
between channels can typically not be used for multichannel 
recordings of this type. 

CONTROVERSY
The last thing that we will mention about spike sorting is the 
ongoing debate within the field of neural prosthetics—still a 
relatively immature field—over whether or not spike sorting is 
really necessary for reliable decoding. Spike sorting in the tradi-
tional sense seeks the single best spike train for each observed 
neuron. As a result, ambiguous spike trains often get discarded, 
which may be undesirable or unacceptable in some cases such 
as chronic recordings. To mitigate this problem, Wood and 
Black propose using an infinite Gaussian mixture model to 
instead generate a distribution of spike trains, i.e., multiple 

SPIKE SORTING WILL ALWAYS 
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 different spike-sorting results 
with varying probabilities [74]. 
Then, this distribution of spike 
trains, rather than a single spike 
train, would serve as input to 
subsequent processing steps. The 
authors postulate that these 
results may be useful in certain 
types of neural signal analysis 
such as decoding algorithms which rely on cosine tuning. This 
approach has the benefit of quantifying the certainty of spike-
sorting results and of improving single-unit yield. However, it is 
unclear how straightforward it would be to use this approach in 
neural signal analysis; downstream algorithms would likely 
have to be modified. 

A number of other researchers have actually reported suffi-
cient decoding performance when multiunit, rather than sin-
gle-unit, activity is decoded. Ventura, for example, presented a 
paradigm for using multiunit spike trains in conjunction with 
existing decoding algorithms, such as the population-vector 
and maximum-likelihood decoding algorithms, to predict 
movement with comparable performance to traditional meth-
ods that use single-unit spike trains [75]. By bypassing spike 
sorting, this method saves time and computational effort, 
making it more appropriate for use in real-time neural pros-
thetics. This method has the added advantage of performing 
well in low SNR, where accurate spike sorting can be unreli-
able. Actually, though, spike sorting is implicitly built in to 
this method, in that each  constituent neuron’s identity is 
revealed through information about tuning. 

Stark and Abeles, on the other hand, came up with a decod-
ing paradigm that involves no spike sorting at all, whether 
explicit or implicit [76]. They introduce a quantity called multi-
unit activity (MUA), which is calculated by bandpass-filtering 
the signal from 300–6,000 Hz and taking the RMS. They then 
used the MUA as input to classification algorithms such as sup-
port vector machines, Fisher’s linear discriminant analysis, 
Poisson probability density estimation, and artificial neural net-
works, which traditionally use single-unit activity. For each of 
these decoding methods, they found MUA to give better motion-
prediction performance than either single-unit activity or LFP. 
Other advantages of this method are that MUA is more easily 
obtained than single-unit activity, MUA recordings are more sta-
ble over time, and MUA is informative even in the absence of 
spikes. An example of an MUA signal, compared to spikes and 
LFP, is shown in Figure 15. 

Another study showed that, while decoding is still better 
when single units are used, an acceptable level of performance 
can also be achieved using multiple units [77]. A number of 
other researchers have also reported success in movement 
decoding using LFP [78], [79]. The primary advantages to using 
LFPs over spikes are that they are easier to acquire, are more 
stable over time, and are less susceptible to noise. Many other 
studies have suggested using a combination of LFPs and spikes 
to achieve high decoding performance [80]–[82]. 

Still, the majority of pub-
lished studies in the field of neu-
ral  prosthetics have used 
single-unit activity as input to 
their decoding algorithms [14], 
[15], [83], [84]. Furthermore, 
neural prosthetics is just one of 
many applications for spike sort-
ing. Spike sorting will always be 

necessary for electrophysiological experiments that are designed 
to study the behavior of individual cells or networks of cells. 

OUTLOOK
Spike sorting is an important processing step for many of the 
scientific and clinical applications that involve the extracellu-
lar recording of neuronal activity. Work still remains in find-
ing optimal automatic, real-time, efficient, and accurate 
spike-sorting algorithms that address all the remaining chal-
lenges described in the section “Challenges in Spike Sorting.” 
Finding such a solution to the spike-sorting problem would 
finally allow reliable spike sorting to be performed in implant-
able hardware. Performing spike sorting in hardware, simulta-
neously on many channels, would provide researchers with 
whole new experimental paradigms. For example, on-site spike 
sorting would aid in providing experimenters with instanta-
neous information about the neurons, such as their tuning 
functions as a stimulus is varied. These signals could also be 
used to “close the loop” by delivering signals back to the brain, 
enabling a whole new class of neurophysiological and neuro-
psychological experiments. Performing spike sorting in hard-
ware would also achieve enough data reduction to enable the 
wireless transmission of data, thereby eliminating the need for 
cables. This would open the door for new types of experiments 
in which the activity of the brain is investigated as animals 
move freely in enriched (and possibly even natural) environ-
ments. It may also allow for recording from species that have 
never before been recorded, such as freely flying bats. Finally, 
implantable spike-sorting hardware would bring medical tech-
nologies for the treatment of disorders such as paralysis, epi-
lepsy, and even cognitive and memory loss closer to a reality. 
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