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Machine Learning Approaches  
for the Neuroimaging Study  
of Alzheimer’s Disease

A lzheimer’s disease (AD) is 
the most common type 
of dementia, account-
ing for 60-80 percent of 

age-related dementia cases. AD pro-
gressively destroys neurons and their 
connections in the brain, leading to 
loss of cognitive function and, ulti-
mately, death. 

The disease currently affects about 
5.3 million people in the US, and the 
number of victims will significantly 
increase in the near future without 
the development of therapeutics. 
AD was the seventh-leading cause 
of death across all ages in the US in 
2006; it was the fifth-leading cause of 
death for those 65 and older (www.
alz.org). The direct cost to care for AD 
patients by family members or health-
care professionals is more than $100 
billion per year; this figure is expected 
to rise dramatically as the population 
ages during the next several decades.

To avert a healthcare crisis, AD 
researchers have recently intensified 
their efforts to delay, cure, or prevent 
the onset and progression of the dis-
ease. These efforts have generated a 
large amount of data, including brain 
neuroimages, that provides unprec-

edented opportunities to investigate 
AD-related questions with higher 
confidence and precision. Especially 
promising is the use of machine 
learning approaches to analyze neu-
roimages to improve AD detection 
and diagnosis. Emerging techniques 
include the fusion of AD data from 
multiple sources, AD biomarker 
identification from multiple sources, 
and the analysis of functional brain 
connectivity. 

NEUROIMAGING
Recent studies have demonstrated 

that imaging parameters based on 
brain scans are more sensitive and 
consistent measures of AD disease 
diagnosis and progression than cogni-
tive assessment. Thus, neuroimaging 
techniques offer great potential to 
identify the specific biomarkers that 
can identify individuals early in the 
course of a dementing illness even 
before onset of the disease.

One common neuroimaging 
technique is structural magnetic 
resonance imaging (MRI), which 
visualizes brain anatomy with a high 
degree of contrast between brain 
tissue types. Researchers can use 

structural MRI to measure specific 
structures such as the hippocampus, 
entorhinal cortex, and amygdyla to 
detect abnormal volumetric changes 
related to AD. Another popular neu-
roimaging technique is positron 
emission tomography (PET). Using 
different radioactive tracers, PET 
provides information on various phys-
iological, biochemical, and metabolic 
processes.

Recognizing these technologies’ 
importance, the National Institutes of 
Health in 2004 funded the Alzheim-
er’s Disease Neuroimaging Initiative 
(ADNI; www.adni-info.org), which 
has become a landmark study in the 
development of neuroimaging and 
other biosignatures for the disease. 
All ADNI subjects undergo 1.5T or 3T 
structural MRI scans (T, for Tesla, is 
a unit of magnetic flux density); half 
undergo fluorodeoxyglucose (FDG) 
PET scans.

FDG-PET scans have been shown 
to be highly sensitive at detecting 
AD-related glucose uptake abnormali-
ties even before onset of the disease. 
For example, Eric Reiman and his 
colleagues examined the cerebral 
metabolic rate for glucose (CMRgl) 
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among normally healthy young sub-
jects who had 0, 1, or 2 copies of the 
apolipoprotein E4 (ApoE4) allele, a 
known genetic risk factor associated 
with AD (E. Reiman et al., “Func-
tional Brain Abnormalities in Young 
Adults at Genetic Risk for Late-Onset 
Alzheimer’s Dementia,” Proc. National 
Academy of Sciences, 6 Jan. 2004, 
pp. 284-289). As Figure 1 shows, the 
healthy ApoE4 carriers had lower 
CMRgl (bright blue) than the noncar-
riers in brain regions whereas CMRgl 
was abnormally low in AD patients 
(purple areas).

In addition to neuroimaging data, 
ADNI compiles demographic informa-
tion such as age, gender, and years of 
education; genetic markers (such as 
possession of ApoE4 allele); clinical 
ratings; various cognitive tests; and 
protein abnormalities in cerebrospi-
nal fluid (CSF), also associated with 
AD.

MULTISOURCE DATA FUSION
Current research has focused on 

using either regions of interest (ROIs) 
or a voxel-based approach to extract 
features from one neuroimaging 
modality—for example, structural 
MRI or PET alone. Integrating com-
plementary ROI and voxel-based 
information from different neuro-
imaging sources and incorporating 
additional information such as demo-
graphic and genetic data will likely 
improve the sensitivity and specificity 
of AD detection.

One way to combine numerous AD 
data sources is to treat the variables in 
all datasets indiscriminately, without 
considering their different levels of 
relevance to AD. Toward this end, AD 
researchers have explored multiple 
kernel learning (MKL), a technique 
that synthesizes information from 
multiple heterogeneous data sources 
into a rigorous optimization prob-

lem (J. Ye et al., “Heterogeneous Data 
Fusion for Alzheimer’s Disease Study,” 
Proc. 14th ACM SIGKDD Int’l Conf. 
Knowledge Discovery and Data Mining, 
ACM Press, 2008, pp. 1025-1033). MKL 
works by first constructing a kernel 
from each of the data sources and 
then combining these kernels into 
a single one based on a certain cri-
terion for improved classification 
performance.

To illustrate, assume we have a 
collection of p data sources with n 
samples. We first construct p kernel 
Gram matrices {G

i
}

i =1, …, p of size 
n by n, one for each of the p data 
sources. A kernel Gram matrix 
computes the dot product of the 
samples in some feature space, thus 
capturing the similarities between 
samples. For example, the ( j,k)-th 
entry of the matrix G

i
 captures the 

similarity between the j-th sample 
and the k-th sample based on the i-th 
data source alone. MKL integrates 
these p data sources by computing 
a composite kernel Gram matrix  
G = Σ

i
θ

i
G

i
, where the optimal com-

bination coefficients are obtained by 
optimizing a certain criterion. Figure 
2 illustrates the use of MKL to fuse 
data from five AD-related sources: 
structural MRI, PET, genetic, CSF, 
and demographic.

To separate AD patients from 
normal control (NC) subjects, 
researchers in the MKL study cited 
above applied the technique to fuse 
structural MRI data based on tensor 
factorization, structural MRI data 
based on anatomical automatic 
labeling, genetic information based 
on ApoE4, gender, and age. They 
measured performance in terms of 
sensitivity (accuracy in correctly iden-
tifying AD patients) and specificity 
(accuracy in correctly identifying NC 
subjects). MKL achieved 95.0 percent 
sensitivity and 89.5 percent specific-
ity, significantly outperforming even 
the best prediction (80.0 percent sen-
sitivity and 79.5 percent specificity) 
using each of the five data sources 
individually. 

Figure 1. Brain regions with abnormally low CMRgl in young adult carriers of the 
ApoE4 allele and their relation to brain regions with abnormally low CMRgl in patients 
with probable AD. Source: E. Reiman et al., “Functional Brain Abnormalities in Young 
Adults at Genetic Risk for Late-Onset Alzheimer’s Dementia,” Proc. National Academy of 
Sciences, 6 Jan. 2004, pp. 284-289).
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multisource data fusion and bio-
marker identification as well as 
analysis of functional brain con-
nectivity. Despite these advances, 
many challenges remain, including 
more effectively predicting disease 
progression and using multisource 
data for efficient clinical treatment 
evaluation.  
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compensatory reallocation or recruit-
ment of cognitive resources. Because 
regions in the frontal lobe are typi-
cally affected later in the course of 
the disease, an increase in frontal 
connectivity arguably helps early AD 
patients maintain some memory and 
attention abilities.

A method based on sparse inverse 
covariance estimation (SICE) identifies 
functional brain connectivity net-
works from FDG-PET data (S. Huang 
et al., “Learning Brain Connectivity of 
Alzheimer’s Disease by Sparse Inverse 
Covariance Estimation,” NeuroImage, 
15 Apr. 2010, pp. 935-949). SICE 
makes it possible to identify both 
the connectivity network structure 
and connectivity strength for a large 
number of brain regions with small 
sample sizes. 

Researchers using SICE have 
observed distinct connectivity pat-
terns for AD patients and NC subjects 
in terms of the number of connec-
tions within lobes, between lobes, 
and between hemispheres, and in 
terms of the strength of such connec-
tions—findings consistent with the 
AD literature. SICE techniques can 
also identify connectivity-based FDG-
PET biomarkers. 

Machine learning tools aid 
many AD-related inves-
tigations by enabling 

MULTISOURCE BIOMARKER 
SELECTION

Another urgent task in current 
AD research is biomarker identifi-
cation, which can be considered a 
general feature selection problem. 
Feature selection algorithms attempt 
to remove as many irrelevant and 
redundant features as possible and 
to find a feature subset such that, 
with dimensionally reduced data, a 
learning algorithm can achieve better 
performance.

Feature selection has a wide vari-
ety of applications including text 
mining, image processing, and bio-
medical informatics. Traditional 
feature selection algorithms work on 
a single data source only. The chal-
lenge for AD researchers is developing 
effective algorithms for data from 
multiple sources to enable the iden-
tification of composite biomarkers.

MKL fuses the contributions of bio-
markers from multiple data sources. 
Specifically, the combined kernel 
matrix extracts data patterns in the 
form of pairwise similarities, which 
can then serve as the input for a 
generic feature selection algorithm. 
Preliminary studies indicate that MKL 
not only adequately distinguishes AD 
and NC subjects but also identifies 
brain regions that play more signifi-
cant roles than others in AD. 

FUNCTIONAL BRAIN 
CONNECTIVITY

Recent studies have shown that 
higher cognitive processing results 
from different brain regions inter-
acting with one another rather than 
working independently. Dramatic 
global cognitive decline is a major 
symptom of AD, and patients’ brains 
thus exhibit abnormal patterns of 
functional connectivity—for exam-
ple, reduced hippocampal network 
activity. 

Some studies of early AD and mild 
cognitive impairment have found 
increased connectivity between the 
frontal lobe and other brain regions. 
Researchers have interpreted this as a 
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Figure 2. Illustration of using multiple kernel learning to fuse data from five sources: 
structural magnetic resonance imaging (MRI), positron emission tomography (PET), 
genetic, cerebrospinal fluid (CSF), and demographic. The composite kernel matrix G is a 
linear combination of the five kernel matrices constructed from these five data sources.  
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